57 research outputs found

    Mapping far-IR emission from the central kiloparsec of NGC 1097

    Get PDF
    Using photometry of NGC 1097 from the Herschel PACS (Photodetector Array Camera and Spectrometer) instrument, we study the resolved properties of thermal dust continuum emission from a circumnuclear starburst ring with a radius ~ 900 pc. These observations are the first to resolve the structure of a circumnuclear ring at wavelengths that probe the peak (i.e. lambda ~ 100 micron) of the dust spectral energy distribution. The ring dominates the far-infrared (far-IR) emission from the galaxy - the high angular resolution of PACS allows us to isolate the ring's contribution and we find it is responsible for 75, 60 and 55% of the total flux of NGC 1097 at 70, 100 and 160 micron, respectively. We compare the far-IR structure of the ring to what is seen at other wavelengths and identify a sequence of far-IR bright knots that correspond to those seen in radio and mid-IR images. The mid- and far-IR band ratios in the ring vary by less than +/- 20% azimuthally, indicating modest variation in the radiation field heating the dust on ~ 600 pc scales. We explore various explanations for the azimuthal uniformity in the far-IR colors of the ring including a lack of well-defined age gradients in the young stellar cluster population, a dominant contribution to the far-IR emission from dust heated by older (> 10 Myr) stars and/or a quick smoothing of local enhancements in dust temperature due to the short orbital period of the ring. Finally, we improve previous limits on the far-IR flux from the inner ~ 600 pc of NGC 1097 by an order of magnitude, providing a better estimate of the total bolometric emission arising from the active galactic nucleus and its associated central starburst.Comment: Accepted for publication in the A&A Herschel Special Editio

    Protostars, multiplicity, and disk evolution in the Corona Australis region: a <i>Herschel</i> Gould Belt Study

    Get PDF
    Context. The CrA region and the Coronet cluster form a nearby (138 pc), young (1-2 Myr) star-forming region that hosts a moderate population of Class I, II, and III objects. Aims: We study the structure of the cluster and the properties of the protostars and protoplanetary disks in the region. Methods: We present Herschel PACS photometry at 100 and 160 μm, obtained as part of the Herschel Gould Belt Survey. The Herschel maps reveal the cluster members within the cloud with high sensitivity and high dynamic range. Results: Many of the cluster members are detected, including some embedded, very low-mass objects, several protostars (some of them extended), and substantial emission from the surrounding molecular cloud. Herschel also reveals some striking structures, such as bright filaments around the IRS 5 protostar complex and a bubble-shaped rim associated with the Class I object IRS 2. The disks around the Class II objects display a wide range of mid- and far-IR excesses consistent with different disk structures. We have modeled the disks with the RADMC radiative transfer code to quantify their properties. Some of them are consistent with flared, massive, relatively primordial disks (S CrA, T CrA). Others display significant evidence for inside-out evolution, consistent with the presence of inner holes/gaps (G-85, G-87). Finally, we found disks with a dramatic small dust depletion (G-1, HBC 677) that, in some cases, could be related to truncation or to the presence of large gaps in a flared disk (CrA-159). The derived masses for the disks around the low-mass stars are found to be below the typical values in Taurus, in agreement with previous Spitzer observations. Conclusions: The Coronet cluster presents itself as an interesting compact region that contains both young protostars and very evolved disks. The Herschel data provide sufficient spatial resolution to detect small-scale details, such as filamentary structures or spiral arms associated with multiple star formation. The disks around the cluster members range from massive, flared primordial disks to disks with substantial small dust grain depletion or with evidence of inside-out evolution. This results in an interesting mixture of objects for a young and presumably coevally formed cluster. Given the high degree of multiplicity and interactions observed among the protostars in the region, the diversity of disks may be a consequence of the early star formation history, which should also be taken into account when studying the disk properties in similar sparsely populated clusters

    The Evolution of Host Specialization in the Vertebrate Gut Symbiont Lactobacillus reuteri

    Get PDF
    Recent research has provided mechanistic insight into the important contributions of the gut microbiota to vertebrate biology, but questions remain about the evolutionary processes that have shaped this symbiosis. In the present study, we showed in experiments with gnotobiotic mice that the evolution of Lactobacillus reuteri with rodents resulted in the emergence of host specialization. To identify genomic events marking adaptations to the murine host, we compared the genome of the rodent isolate L. reuteri 100-23 with that of the human isolate L. reuteri F275, and we identified hundreds of genes that were specific to each strain. In order to differentiate true host-specific genome content from strain-level differences, comparative genome hybridizations were performed to query 57 L. reuteri strains originating from six different vertebrate hosts in combination with genome sequence comparisons of nine strains encompassing five phylogenetic lineages of the species. This approach revealed that rodent strains, although showing a high degree of genomic plasticity, possessed a specific genome inventory that was rare or absent in strains from other vertebrate hosts. The distinct genome content of L. reuteri lineages reflected the niche characteristics in the gastrointestinal tracts of their respective hosts, and inactivation of seven out of eight representative rodent-specific genes in L. reuteri 100-23 resulted in impaired ecological performance in the gut of mice. The comparative genomic analyses suggested fundamentally different trends of genome evolution in rodent and human L. reuteri populations, with the former possessing a large and adaptable pan-genome while the latter being subjected to a process of reductive evolution. In conclusion, this study provided experimental evidence and a molecular basis for the evolution of host specificity in a vertebrate gut symbiont, and it identified genomic events that have shaped this process

    THOR - The HI, OH, Recombination Line Survey of the Milky Way - The pilot study: HI observations of the giant molecular cloud W43

    Get PDF
    To study the atomic, molecular and ionized emission of Giant Molecular Clouds (GMCs), we have initiated a Large Program with the VLA: 'THOR - The HI, OH, Recombination Line survey of the Milky Way'. We map the 21cm HI line, 4 OH lines, 19 H_alpha recombination lines and the continuum from 1 to 2 GHz of a significant fraction of the Milky Way (l=15-67deg, |b|<1deg) at ~20" resolution. In this paper, we focus on the HI emission from the W43 star-formation complex. Classically, the HI 21cm line is treated as optically thin with column densities calculated under this assumption. This might give reasonable results for regions of low-mass star-formation, however, it is not sufficient to describe GMCs. We analyzed strong continuum sources to measure the optical depth, and thus correct the HI 21cm emission for optical depth effects and weak diffuse continuum emission. Hence, we are able to measure the HI mass of W43 more accurately and our analysis reveals a lower limit of M=6.6x10^6 M_sun, which is a factor of 2.4 larger than the mass estimated with the assumption of optically thin emission. The HI column densities are as high as N(HI)~150 M_sun/pc^2 ~ 1.9x10^22 cm^-2, which is an order of magnitude higher than for low mass star formation regions. This result challenges theoretical models that predict a threshold for the HI column density of ~10 M_sun/pc^2, at which the formation of molecular hydrogen should set in. By assuming an elliptical layered structure for W43, we estimate the particle density profiles. While at the cloud edge atomic and molecular hydrogen are well mixed, the center of the cloud is strongly dominated by molecular hydrogen. We do not identify a sharp transition between hydrogen in atomic and molecular form. Our results are an important characterization of the atomic to molecular hydrogen transition in an extreme environment and challenges current theoretical models

    A communal catalogue reveals Earth's multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe

    A communal catalogue reveals Earth’s multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity

    Development of a Unifying Target and Consensus Indicators for Global Surgical Systems Strengthening: Proposed by the Global Alliance for Surgery, Obstetric, Trauma, and Anaesthesia Care (The G4 Alliance)

    Get PDF
    corecore