1,054 research outputs found

    Amino Acid Starvation Induced by Invasive Bacterial Pathogens Triggers an Innate Host Defense Program

    Get PDF
    SummaryAutophagy, which targets cellular constituents for degradation, is normally inhibited in metabolically replete cells by the metabolic checkpoint kinase mTOR. Although autophagic degradation of invasive bacteria has emerged as a critical host defense mechanism, the signals that induce autophagy upon bacterial infection remain unclear. We find that infection of epithelial cells with Shigella and Salmonella triggers acute intracellular amino acid (AA) starvation due to host membrane damage. Pathogen-induced AA starvation caused downregulation of mTOR activity, resulting in the induction of autophagy. In Salmonella-infected cells, membrane integrity and cytosolic AA levels rapidly normalized, favoring mTOR reactivation at the surface of the Salmonella-containing vacuole and bacterial escape from autophagy. In addition, bacteria-induced AA starvation activated the GCN2 kinase, eukaryotic initiation factor 2α, and the transcription factor ATF3-dependent integrated stress response and transcriptional reprogramming. Thus, AA starvation induced by bacterial pathogens is sensed by the host to trigger protective innate immune and stress responses

    A Genome-Wide Assessment of the Ancestral Neural Crest Gene Regulatory Network

    Get PDF
    The neural crest (NC) is an embryonic cell population that contributes to key vertebrate-specific features including the craniofacial skeleton and peripheral nervous system. Here we examine the transcriptional and epigenomic profiles of NC cells in the sea lamprey, in order to gain insight into the ancestral state of the NC gene regulatory network (GRN). Transcriptome analyses identify clusters of co-regulated genes during NC specification and migration that show high conservation across vertebrates but also identify transcription factors (TFs) and cell-adhesion molecules not previously implicated in NC migration. ATAC-seq analysis uncovers an ensemble of cis-regulatory elements, including enhancers of Tfap2B, SoxE1 and Hox-α2 validated in the embryo. Cross-species deployment of lamprey elements identifies the deep conservation of lamprey SoxE1 enhancer activity, mediating homologous expression in jawed vertebrates. Our data provide insight into the core GRN elements conserved to the base of the vertebrates and expose others that are unique to lampreys

    A genome-wide assessment of the ancestral neural crest gene regulatory network

    Get PDF
    The neural crest is an embryonic cell population that contributes to key vertebrate-specific features including the craniofacial skeleton and peripheral nervous system. Here we examine the transcriptional profiles and chromatin accessibility of neural crest cells in the basal sea lamprey, in order to gain insight into the ancestral state of the neural crest gene regulatory network (GRN) at the dawn of vertebrates. Transcriptome analyses reveal clusters of co-regulated genes during neural crest specification and migration that show high conservation across vertebrates for dynamic programmes like Wnt modulation during the epithelial to mesenchymal transition, but also reveal novel transcription factors and cell-adhesion molecules not previously implicated in neural crest migration. ATAC-seq analysis refines the location of known cis-regulatory elements at the Hox-α2 locus and uncovers novel cis-regulatory elements for Tfap2B and SoxE1. Moreover, cross-species deployment of lamprey elements in zebrafish reveals that the lamprey SoxE1 enhancer activity is deeply conserved, mediating homologous expression in jawed vertebrates. Together, our data provide new insight into the core elements of the GRN that are conserved to the base of the vertebrates, as well as expose elements that are unique to lampreys

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Ultrasensitive plano-concave optical microresonators for ultrasound sensing

    Get PDF
    Highly sensitive broadband ultrasound detectors are needed to expand the capabilities of biomedical ultrasound, photoacoustic imaging and industrial ultrasonic non-destructive testing techniques. Here, a generic optical ultrasound sensing concept based on a novel plano-concave polymer microresonator is described. This achieves strong optical confinement (Q-factors > 105) resulting in very high sensitivity with excellent broadband acoustic frequency response and wide directivity. The concept is highly scalable in terms of bandwidth and sensitivity. To illustrate this, a family of microresonator sensors with broadband acoustic responses up to 40 MHz and noise-equivalent pressures as low as 1.6 mPa per √Hz have been fabricated and comprehensively characterized in terms of their acoustic performance. In addition, their practical application to high-resolution photoacoustic and ultrasound imaging is demonstrated. The favourable acoustic performance and design flexibility of the technology offers new opportunities to advance biomedical and industrial ultrasound-based techniques

    Pregnancy as a risk factor for severe influenza infection: an individual participant data meta-analysis

    Get PDF
    Background: WHO identifies pregnant women to be at increased risk for severe outcomes from influenza virus infections and recommends that they be prioritized for influenza vaccination. The evidence supporting this, however, is inconsistent. Ecologic studies in particular suggest more severe outcomes from influenza infection during pregnancy than studies based on individual patient data. Individual studies however may be underpowered and, as reported in a previous systematic review, confounding factors could not be adjusted for. We therefore conducted an individual participant data meta-analysis to assess the risk for severe outcomes of influenza infection in pregnant women while adjusting for other prognostic factors. Methods: We contacted authors of studies included in a recently published systematic review. We pooled the individual participant data of women of reproductive age and laboratory confirmation of influenza virus infection. We used a generalized linear mixed model and reported odds ratios (OR) and 95% confidence intervals (CI). Results: A total of 33 datasets with data on 186,656 individuals were available, including 36,498 eligible women of reproductive age and known pregnancy status. In the multivariable model, pregnancy was associated with a 7 times higher risk of hospital admission (OR 6.80, 95%CI 6.02–7.68), among patients receiving medical care as in- or outpatients, pregnancy was associated with a lower risk of admission to intensive care units (ICU; OR 0.57, 95%CI 0.48–0.69), and was not significantly associated with death (OR 1.00, 95%CI 0.75–1.34). Conclusions: Our study found a higher risk of influenza associated hospitalization among pregnant women as compared to non-pregnant women. We did not find a higher mortality rate or higher likelihood of ICU admission among pregnant women who sought medical care. However, this study did not address whether a true community based cohort of pregnant women is at higher risk of influenza associated complications.Fil: Mertz, Dominik. Mc Master University; CanadáFil: Lo, Calvin Ka Fung. Mc Master University; CanadáFil: Lytvyn, Lyubov. Mc Master University; CanadáFil: Ortiz, Justin R.. Organizacion Mundial de la Salud; ArgentinaFil: Loeb, Mark. Mc Master University; CanadáFil: Ang, Li Wei. Ministry of Health; SingapurFil: Anlikumar, Mehta Asmita. Amrita Vishwa Vidyapeetham; IndiaFil: Bonmarin, Isabelle. Santé publique; FranciaFil: Borja Aburto, Victor Hugo. Instituto Mexicano del Seguro Social; MéxicoFil: Burgmann, Heinz. Medical University Vienna; AustriaFil: Carratalà, Jordi. Universidad de Barcelona; España. Instituto de Investigación Biomédica de Bellvitge; España. Spanish Network for Research in Infectious Diseases; EspañaFil: Chowell, Gerardo. Georgia State University; Estados Unidos. National Institutes of Health; Estados UnidosFil: Cilloniz, Catia. Universidad de Barcelona; España. Instituto de Investigaciones Biomédicas August Pi i Sunyer; EspañaFil: Cohen, Jessica. Centers for Disease Control and Prevention; Estados UnidosFil: Cutter, Jeffery. Ministry of Health; SingapurFil: Filleul, Laurent. Santé publique; Francia. French National Public Health Agency; FranciaFil: Garg, Shikha. Centers for Disease Control and Prevention; Estados UnidosFil: Geis, Steffen. London School of Hygiene and Tropical Medicine; Reino UnidoFil: Helferty, Melissa. Public Health Agency; CanadáFil: Huang, Wan Ting. Taiwan Centers for Disease Control; ChinaFil: Jain, Seema. Centers for Disease Control and Prevention; Estados UnidosFil: Sevic, Biljana Joves. Institute for Pulmonary Diseases of Vojvodina; SerbiaFil: Kelly, Paul. Australian Capital Territory Health Directorate; Australia. Australian National University Medical School; AustraliaFil: Kusznierz, Gabriela. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorios e Instituto de Salud "Dr. C. G. Malbran". Instituto Nacional de Enfermedades Respiratorias; ArgentinaFil: Lehners, Nicola. Ruprecht Karls Universitat Heidelberg; AlemaniaFil: Lenzi, Luana. Universidade Federal do Paraná; BrasilFil: Ling, Ivan T.. Sir Charles Gairdner Hospital; AustraliaFil: Mitchell, Robyn. Public Health Agency; CanadáFil: Mulrennan, Siobhain A.. Sir Charles Gairdner Hospital; Canadá. University of Western Australia; AustraliaFil: Nishioka, Sergio A.. Ministerio de Salud de Brasil; BrasilFil: Norton, Robert. Townsville Hospital; AustraliaFil: Oh, Won Sup. Kangwon National University School of Medicine; Corea del SurFil: Orellano, Pablo Wenceslao. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    The Time-resolved Atomic, Molecular and Optical Science Instrument at the Linac Coherent Light Source

    Full text link
    The newly constructed Time-resolved atomic, Molecular and Optical science instrument (TMO), is configured to take full advantage of both linear accelerators at SLAC National Accelerator Laboratory, the copper accelerator operating at a repetition rate of 120 Hz providing high per pulse energy, as well as the superconducting accelerator operating at a repetition rate of about 1 MHz providing high average intensity. Both accelerators build a soft X-ray free electron laser with the new variable gab undulator section. With this flexible light sources, TMO supports many experimental techniques not previously available at LCLS and will have two X-ray beam focus spots in line. Thereby, TMO supports Atomic, Molecular and Optical (AMO), strong-field and nonlinear science and will host a designated new dynamic reaction microscope with a sub-micron X-ray focus spot. The flexible instrument design is optimized for studying ultrafast electronic and molecular phenomena and can take full advantage of the sub-femtosecond soft X-ray pulse generation program
    corecore