50 research outputs found

    The role of C-terminal amidation in the membrane interactions of the anionic antimicrobial peptide, maximin H5

    Get PDF
    Maximin H5 is an anionic antimicrobial peptide from amphibians, which carries a C-terminal amide moiety, and was found to be moderately haemolytic (20%). The α-helicity of the peptide was 42% in the presence of lipid mimics of erythrocyte membranes and was found able to penetrate (10.8mNm(-1)) and lyse these model membranes (64 %). In contrast, the deaminated peptide exhibited lower levels of haemolysis (12%) and α-helicity (16%) along with a reduced ability to penetrate (7.8mNm(-1)) and lyse (55%) lipid mimics of erythrocyte membranes. Taken with molecular dynamic simulations and theoretical analysis, these data suggest that native maximin H5 primarily exerts its haemolytic action via the formation of an oblique orientated α-helical structure and tilted membrane insertion. However, the C-terminal deamination of maximin H5 induces a loss of tilted α-helical structure, which abolishes the ability of the peptide's N-terminal and C-terminal regions to H-bond and leads to a loss in haemolytic ability. Taken in combination, these observations strongly suggest that the C-terminal amide moiety carried by maximin H5 is required to stabilise the adoption of membrane interactive tilted structure by the peptide. Consistent with previous reports, these data show that the efficacy of interaction and specificity of maximin H5 for membranes can be attenuated by sequence modification and may assist in the development of variants of the peptide with the potential to serve as anti-infective

    A sensorimotor control framework for understanding emotional communication and regulation

    Get PDF
    JHGW and CFH are supported by the Northwood Trust. TEVR was supported by a National Health and Medical Research Council (NHMRC) Early Career Fellowship (1088785). RP and MW were supported by the the Australian Research Council (ARC) Centre of Excellence for Cognition and its Disorders (CE110001021)Peer reviewedPublisher PD

    Salesmen's personality characteristics and sample bias

    No full text

    Certified reference materials for organic contaminants in sewage sludge - A feasibility study

    No full text
    As an answer to the re-evaluation of the European sludge directive, two novel reference materials for organic components in municipal sludge have been produced and test certified for AOX (absorbable organic halogens), PAH (polycyclic aromatic hydrocarbons), NPE (nonylphenol and nonylphenolethoxylates) , DEHP (di(2-ethylhexyl)phthalate), bisphenol A, and BFR (brominated flame retardants). The materials were prepared from raw sludge without spiking or mixing of different sludges. The study demonstrated that the technique for the preparation of a suitable reference material, sufficiently homogenous and stable, and with concentration levels that answer the needs of the laboratories and the relevant authorities, can now be presented in detail. The results, furthermore, show there is a need for method validation and standardisation of the measurements of NPEs and certain BFR congeners, and that the development of the laboratory structure in Europe, with fewer and more specialised laboratories, might become a major obstacle when trying to find a sufficient number of laboratories being appropriately proficient for this kind of study in the future. © 2008 Springer-Verlag

    Differential associations of metabolic risk factors on cortical thickness in metabolic syndrome

    No full text
    Objective: Metabolic syndrome (MetS) refers to a cluster of risk factors for cardiovascular disease, including obesity, hypertension, dyslipidemia, and hyperglycemia. While sizable prior literature has examined associations between individual risk factors and quantitative measures of cortical thickness (CT), only very limited research has investigated such measures in MetS. Furthermore, the relative contributions of these risk factors to MetS-related effects on brain morphology have not yet been studied. The primary goal of this investigation was to examine how MetS may affect CT. A secondary goal was to explore the relative contributions of individual risk factors to regional alterations in CT, with the potential to identify risk factor combinations that may underlie structural changes. Methods: Eighteen participants with MetS (mean age = 59.78 years) were age-matched with 18 healthy control participants (mean age = 60.50 years). CT measures were generated from T1-weighted images and groups were contrasted using whole-brain general linear modeling. A follow-up multivariate partial least squares correlation (PLS) analysis, including the full study sample with complete risk factor measurements (N = 53), was employed to examine which risk factors account for variance in group structural differences. Results: Participants with MetS demonstrated significantly reduced CT in left hemisphere inferior parietal, rostral middle frontal, and lateral occipital clusters and in a right hemisphere precentral cluster. The PLS analysis revealed that waist circumference, high-density lipoprotein cholesterol (HDL-C), triglycerides, and glucose were significant contributors to reduced CT in these clusters. In contrast, diastolic blood pressure showed a significantly positive association with CT while systolic blood pressure did not emerge as a significant contributor. Age was not associated with CT. Conclusion: These results indicate that MetS can be associated with regionally specific reductions in CT. Importantly, a novel link between a risk factor profile comprising indices of obesity, hyperglycemia, dyslipidemia and diastolic BP and localized alterations in CT emerged. While the pathophysiological mechanisms underlying these associations remain incompletely understood, these findings may be relevant for future investigations of MetS and might have implications for treatment approaches that focus on specific risk factor profiles with the aim to reduce negative consequences on the structural integrity of the brain

    Identification and characterization of TM4SF1+ tumor self-seeded cells

    No full text
    Summary: Tumor self-seeding is a process whereby circulating tumor cells (CTCs) recolonize the primary tumor, which promotes tumor growth, angiogenesis, and invasion. However, the detailed nature and functions of tumor self-seeded cells (TSCs) have not been well defined due to challenges in tracking and isolating TSCs. Here, we report an accurate animal model using photoconvertible tagging to recapitulate the spontaneous process of tumor self-seeding and identify TSCs as a subpopulation of primary tumor cells with enhanced invasiveness and survival. We demonstrate transmembrane-4-L-six-family-1 (TM4SF1) as a marker of TSCs, which promotes migration, invasion, and anchorage-independent survival in cancer cells. By analyzing single-cell RNA sequencing datasets, we identify a potential TSC population with a metastatic profile in patients with cancer, which is detectable in early-stage disease and expands during cancer progression. In summary, we establish a framework to study TSCs and identify emerging cell targets with diagnostic, prognostic, or therapeutic potential in cancers
    corecore