348 research outputs found

    Viewing the personality traits through a cerebellar lens. A focus on the constructs of novelty seeking, harm avoidance, and alexithymia

    Get PDF
    The variance in the range of personality trait expression appears to be linked to structural variance in specific brain regions. In evidencing associations between personality factors and neurobiological measures, it seems evident that the cerebellum has not been up to now thought as having a key role in personality. This paper will review the most recent structural and functional neuroimaging literature that engages the cerebellum in personality traits, as novelty seeking and harm avoidance, and it will discuss the findings in the context of contemporary theories of affective and cognitive cerebellar function. By using region of interest (ROI)- and voxel-based approaches, we recently evidenced that the cerebellar volumes correlate positively with novelty seeking scores and negatively with harm avoidance scores. Subjects who search for new situations as a novelty seeker does (and a harm avoiding does not do) show a different engagement of their cerebellar circuitries in order to rapidly adapt to changing environments. The emerging model of cerebellar functionality may explain how the cerebellar abilities in planning, controlling, and putting into action the behavior are associated to normal or abnormal personality constructs. In this framework, it is worth reporting that increased cerebellar volumes are even associated with high scores in alexithymia, construct of personality characterized by impairment in cognitive, emotional, and affective processing. On such a basis, it seems necessary to go over the traditional cortico-centric view of personality constructs and to address the function of the cerebellar system in sustaining aspects of motivational network that characterizes the different temperamental trait

    Maintenance of aversive memories shown by fear extinction-impaired phenotypes is associated with increased activity in the amygdaloid-prefrontal circuit

    Get PDF
    Although aversive memory has been mainly addressed by analysing the changes occurring in average populations, the study of neuronal mechanisms of outliers allows understanding the involvement of individual differences in fear conditioning and extinction. We recently developed an innovative experimental model of individual differences in approach and avoidance behaviors, classifying the mice as Approaching, Balancing or Avoiding animals according to their responses to conflicting stimuli. The approach and avoidance behaviors appear to be the primary reactions to rewarding and threatening stimuli and may represent predictors of vulnerability (or resilience) to fear. We submitted the three mice phenotypes to Contextual Fear Conditioning. In comparison to Balancing animals, Approaching and Avoiding mice exhibited no middle- or long-term fear extinction. The two non-extinguishing phenotypes exhibited potentiated glutamatergic neurotransmission (spontaneous excitatory postsynaptic currents/spinogenesis) of pyramidal neurons of medial prefrontal cortex and basolateral amygdala. Basing on the a priori individuation of outliers, we demonstrated that the maintenance of aversive memories is linked to increased spinogenesis and excitatory signaling in the amygdala-prefrontal cortex fear matri

    Pre-reproductive parental enriching experiences influence progeny’s developmental trajectories

    Get PDF
    While the positive effects of environmental enrichment (EE) applied after weaning, in adulthood, during aging, or even in the presence of brain damage have been widely described, the transgenerational effects of pre-reproductive EE have been less examined. And yet, this issue is remarkable given that parental environmental experience may imprint offspring's phenotype over generations through many epigenetic processes. Interactions between individual and environment take place lifelong even before conception. In fact, the environment pre-reproductively experienced by the mother and/or the father exerts a substantial impact on neural development and motor and cognitive performances of the offspring, even if not directly exposed to social, cognitive, physical and/or motor enrichment. Furthermore, pre-reproductive parental enrichment exerts a transgenerational impact on coping response to stress as well as on the social behavior of the offspring. Among the effects of pre-reproductive parental EE, a potentiation of the maternal care and a decrease in global methylation levels in the frontal cortex and hippocampus of the progeny have been described. Finally, pre-reproductive EE modifies different pathways of neuromodulation in the brain of the offspring (involving brain-derived neurotrophic factor, oxytocin and glucocorticoid receptors). The present review highlights the importance of pre-reproductive parental enrichment in altering the performances not only of animals directly experiencing it, but also of their progeny, thus opening the way to new hypotheses on the inheritance mechanisms of behavioral trait

    Analisi del sistema ETL Oracle GoldenGate

    Get PDF
    Si esamina il problema dell’integrazione di sorgenti diverse di dati nel processo di data warehousing in presenza di un Operational Data Store. Il problema viene poi risolto con il sistema ETL Oracle GoldenGate, soluzione alternativa al sistema di data integration Oracle Streams

    Cerebellar structural variations in subjects with different hypnotizability

    Get PDF
    Hypnotizability-the proneness to accept suggestions and behave accordingly-has a number of physiological and behavioral correlates (postural, visuomotor, and pain control) which suggest a possible involvement of cerebellar function and/or structure. The present study was aimed at investigating the association between cerebellar macro- or micro-structural variations (analyzed through a voxel-based morphometry and a diffusion tensor imaging approach) and hypnotic susceptibility. We also estimated morphometric variations of cerebral gray matter structures, to support current evidence of hypnotizability-related differences in some cerebral areas. High (highs, N = 12), and low (lows, N = 37) hypnotizable healthy participants (according to the Stanford Hypnotic Susceptibility Scale, form A) were submitted to a high field (3 T) magnetic resonance imaging protocol. In comparison to lows, highs showed smaller gray matter volumes in left cerebellar lobules IV/V and VI at uncorrected level, with the results in left lobule IV/V maintained also at corrected level. Highs showed also gray matter volumes smaller than lows in right inferior temporal gyrus, middle and superior orbitofrontal cortex, parahippocampal gyrus, and supramarginal parietal gyrus, as well as in left gyrus rectus, insula, and middle temporal cortex at uncorrected level. Results of right inferior temporal gyrus survived also at corrected level. Analyses on micro-structural data failed to reveal any significant association. The here found morphological variations allow to extend the traditional cortico-centric view of hypnotizability to the cerebellar regions, suggesting that cerebellar peculiarities may sustain hypnotizability-related differences in sensorimotor integration and emotional contro

    Cerebellar BDNF promotes exploration and seeking for novelty

    Get PDF
    Approach system considered a motivational system that activates reward-seeking behavior is associated with exploration/impulsivity, whereas avoidance system considered an attentional system that promotes inhibition of appetitive responses is associated with active overt withdrawal. Approach and avoidance dispositions are modulated by distinct neurochemical profiles and synaptic patterns. However, the precise working of neurons and trafficking of molecules in the brain activity predisposing to approach and avoidance are yet unclear

    Cross sections for 14-eV e-H2 resonant collisions: Dissociative electron attachment

    Get PDF
    The dissociative electron attachment (DEA) process in electron-H[sub]2 molecule collisions, involving the ^2Σ^+[sub]g excited electronic Rydberg state of molecular hydrogen ion H[sub]2^−, is investigated theoretically. The DEA cross section has been calculated within the local complex potential approximation. The convoluted cross section, which presents a peak located at the incident energy of about 14 eV, compares favorably with available experimental data

    Molecular physics of elementary processes relevant to hypersonics: Electron-molecule collisions

    Get PDF
    Non-resonant, electron-impact, vibro-electronic excitation cross sections, involving vibrationally excited N2 molecules, to the mixed valence-Rydberg b,c,o 1Πu and b′,c′,e′ 1åu+ singlet states are presented. These cross sections are calculated using the so-called similarity approach, accounting for the vibronic coupling among excited states, and compared with the experiments and different theoretical calculations. New cross sections for the electron-impact resonant vibrational excitation of CO2 molecule are calculated, for the symmetric stretching mode, as a function of the incident electron energy and for the transitions (υ i , 0,0)→(νf , 0,0) with νi = 0,1,2 and for some selected value of νf in the interval νi ≤νf ≤10. A resonance potential curve and associated widths are calculated using the R-matrix method. Rate coefficients, calculated by assuming a Maxwellian electron energy distribution function, are also presented for the same (νi , 0,0)→(νf , 0,0) transitions. Electron-impact cross sections and rate coefficients for resonant vibrational excitations involving the diatomic species N2, NO, CO, O2 and H2, for multi-quantic and mono-quantic transitions, are reviewed along with the cross sections and rates for the process of the dissociative electron attachment to H2 molecule, involving a Rydberg excited resonant state of the H2- ion

    Cross sections for 11–14-eV e-H2 resonant collisions: Vibrational excitation

    Get PDF
    Resonant vibrational excitation (RVE) cross sections have been calculated for the electron-H2 molecule collisions in the energy range 11–14 eV involving the 2Σ+g excited electronic state of the molecular hydrogen ion H2−. This state, whose threshold is located around 14 eV, gives rise to the so-called series a of the observed peaks in electron-impact differential cross-section measurements. The calculations have been performed within the local complex potential approximation by using the available theoretical potential energy and width for the 2Σ+g resonant state. The cross sections for all vi=0→vf=1–14 RVE transitions have been calculated. A satisfactory agreement of calculated cross sections with the available experimental data is obtained

    Influence of pre-reproductive maternal enrichment on coping response to stress and expression of c-Fos and glucocorticoid receptors in adolescent offspring

    Get PDF
    Environmental enrichment (EE) is an experimental setting broadly used for investigating the effects of complex social, cognitive, and sensorimotor stimulations on brain structure and function. Recent studies point out that parental EE experience, even occurring in the pre-reproductive phase, affects neural development and behavioral trajectories of the offspring. In the present study we investigated the influences of pre-reproductive EE of female rats on maternal behavior and adolescent male offspring's coping response to an inescapable stressful situation after chronic social isolation. For this purpose female Wistar rats were housed from weaning to breeding age in enriched or standard environments. Subsequently, all females were mated and housed in standard conditions until offspring weaning. On the first post partum day (ppd 1), mother-pup interactions in undisturbed conditions were recorded. Further, after weaning the male pups were reared for 2 weeks under social isolation or in standard conditions, and then submitted or not to a single-session Forced Swim Test (FST). Offspring's neuronal activation and plastic changes were identified by immunohistochemistry for c-Fos and glucocorticoid receptors (GRs), and assessed by using stereological analysis. The biochemical correlates were measured in the hippocampus, amygdala and cingulate cortex, structures involved in hypothalamic-pituitary-adrenocortical axis regulation. Enriched dams exhibited increased Crouching levels in comparison to standard reared dams. In the offspring of both kinds of dams, social isolation reduced body weight, decreased Immobility, and increased Swimming during FST. Moreover, isolated offspring of enriched dams exhibited higher levels of Climbing in comparison to controls. Interestingly, in the amygdala of both isolated and control offspring of enriched dams we found a lower number of c-Fos immunopositive cells in response to FST and a higher number of GRs in comparison to the offspring of standard dams. These results highlight the profound influence of a stressful condition, such as the social isolation, on the brain of adolescent rats, and underline intergenerational effects of maternal experiences in regulating the offspring response to stress
    • …
    corecore