34 research outputs found

    Range, Doppler and astrometric observables computed from Time Transfer Functions: a survey

    Full text link
    Determining range, Doppler and astrometric observables is of crucial interest for modelling and analyzing space observations. We recall how these observables can be computed when the travel time of a light ray is known as a function of the positions of the emitter and the receiver for a given instant of reception (or emission). For a long time, such a function--called a reception (or emission) time transfer function--has been almost exclusively calculated by integrating the null geodesic equations describing the light rays. However, other methods avoiding such an integration have been considerably developped in the last twelve years. We give a survey of the analytical results obtained with these new methods up to the third order in the gravitational constant GG for a mass monopole. We briefly discuss the case of quasi-conjunctions, where higher-order enhanced terms must be taken into account for correctly calculating the effects. We summarize the results obtained at the first order in GG when the multipole structure and the motion of an axisymmetric body is taken into account. We present some applications to on-going or future missions like Gaia and Juno. We give a short review of the recent works devoted to the numerical estimates of the time transfer functions and their derivatives.Comment: 6 pages, 2 figures, proceedings of the Conference "Journ\'ees 2014 Syst\`emes de r\'ef\'erence spatio-temporels (Recent developments and prospects in ground-based and space astrometry)", 22-24 September 2014, Pulkovo Observatory, Russi

    Direction of light propagation to order G^2 in static, spherically symmetric spacetimes: a new derivation

    Full text link
    A procedure avoiding any integration of the null geodesic equations is used to derive the direction of light propagation in a three-parameter family of static, spherically symmetric spacetimes within the post-post-Minkowskian approximation. Quasi-Cartesian isotropic coordinates adapted to the symmetries of spacetime are systematically used. It is found that the expression of the angle formed by two light rays as measured by a static observer staying at a given point is remarkably simple in these coordinates. The attention is mainly focused on the null geodesic paths that we call the "quasi-Minkowskian light rays". The vector-like functions characterizing the direction of propagation of such light rays at their points of emission and reception are firstly obtained in the generic case where these points are both located at a finite distance from the centre of symmetry. The direction of propagation of the quasi-Minkowskian light rays emitted at infinity is then straightforwardly deduced. An intrinsic definition of the gravitational deflection angle relative to a static observer located at a finite distance is proposed for these rays. The expression inferred from this definition extends the formula currently used in VLBI astrometry up to the second order in the gravitational constant G.Comment: 19 pages; revised introduction; added references for introduction; corrected typos; published in Class. Quantum Gra

    Time-Varying Gravitomagnetism

    Get PDF
    Time-varying gravitomagnetic fields are considered within the linear post-Newtonian approach to general relativity. A simple model is developed in which the gravitomagnetic field of a localized mass-energy current varies linearly with time. The implications of this temporal variation of the source for the precession of test gyroscopes and the motion of null rays are briefly discussed.Comment: 10 pages; v2: slightly expanded version accepted for publication in Class. Quantum Gra

    Accurate light-time correction due to a gravitating mass

    Full text link
    This work arose as an aftermath of Cassini's 2002 experiment \cite{bblipt03}, in which the PPN parameter γ\gamma was measured with an accuracy σγ=2.3×105\sigma_\gamma = 2.3\times 10^{-5} and found consistent with the prediction γ=1\gamma =1 of general relativity. The Orbit Determination Program (ODP) of NASA's Jet Propulsion Laboratory, which was used in the data analysis, is based on an expression for the gravitational delay which differs from the standard formula; this difference is of second order in powers of mm -- the sun's gravitational radius -- but in Cassini's case it was much larger than the expected order of magnitude m2/bm^2/b, where bb is the ray's closest approach distance. Since the ODP does not account for any other second-order terms, it is necessary, also in view of future more accurate experiments, to systematically evaluate higher order corrections and to determine which terms are significant. Light propagation in a static spacetime is equivalent to a problem in ordinary geometrical optics; Fermat's action functional at its minimum is just the light-time between the two end points A and B. A new and powerful formulation is thus obtained. Asymptotic power series are necessary to provide a safe and automatic way of selecting which terms to keep at each order. Higher order approximations to the delay and the deflection are obtained. We also show that in a close superior conjunction, when bb is much smaller than the distances of A and B from the Sun, of order RR, say, the second-order correction has an \emph{enhanced} part of order m2R/b2m^2R/b^2, which corresponds just to the second-order terms introduced in the ODP. Gravitational deflection of the image of a far away source, observed from a finite distance from the mass, is obtained to O(m2)O(m^2).Comment: 4 figure

    Radioscience simulations in General Relativity and in alternative theories of gravity

    Full text link
    In this communication, we focus on the possibility to test GR with radioscience experiments. We present a new software that in a first step simulates the Range/Doppler signals directly from the space time metric (thus in GR and in alternative theories of gravity). In a second step, a least-squares fit of the involved parameters is performed in GR. This software allows one to get the order of magnitude and the signature of the modifications induced by an alternative theory of gravity on radioscience signals. As examples, we present some simulations for the Cassini mission in Post-Einsteinian gravity and with the MOND External Field Effect.Comment: 4 pages; Proceedings of "Les Rencontres de Moriond 2011 - Gravitation session

    A universal tool for determining the time delay and the frequency shift of light: Synge's world function

    Full text link
    In almost all of the studies devoted to the time delay and the frequency shift of light, the calculations are based on the integration of the null geodesic equations. However, the above-mentioned effects can be calculated without integrating the geodesic equations if one is able to determine the bifunction Ω(xA,xB)\Omega(x_A, x_B) giving half the squared geodesic distance between two points xAx_A and xBx_B (this bifunction may be called Synge's world function). In this lecture, Ω(xA,xB)\Omega(x_A, x_B) is determined up to the order 1/c31/c^3 within the framework of the PPN formalism. The case of a stationary gravitational field generated by an isolated, slowly rotating axisymmetric body is studied in detail. The calculation of the time delay and the frequency shift is carried out up to the order 1/c41/c^4. Explicit formulae are obtained for the contributions of the mass, of the quadrupole moment and of the internal angular momentum when the only post-Newtonian parameters different from zero are β\beta and γ\gamma. It is shown that the frequency shift induced by the mass quadrupole moment of the Earth at the order 1/c31/c^3 will amount to 101610^{-16} in spatial experiments like the ESA's Atomic Clock Ensemble in Space mission. Other contributions are briefly discussed.Comment: 18 pages, To appear in: "Lasers, Clocks and Drag-Free control: Exploration of Relativistic Gravity in Space", Springer Series on Astrophysics and Space Science Library, vol 349, p 15

    Application of Time Transfer Function to McVittie Spacetime: Gravitational Time Delay and Secular Increase in Astronomical Unit

    Full text link
    We attempt to calculate the gravitational time delay in a time-dependent gravitational field, especially in McVittie spacetime, which can be considered as the spacetime around a gravitating body such as the Sun, embedded in the FLRW (Friedmann-Lema\^itre-Robertson-Walker) cosmological background metric. To this end, we adopt the time transfer function method proposed by Le Poncin-Lafitte {\it et al.} (Class. Quant. Grav. 21:4463, 2004) and Teyssandier and Le Poncin-Lafitte (Class. Quant. Grav. 25:145020, 2008), which is originally related to Synge's world function Ω(xA,xB)\Omega(x_A, x_B) and enables to circumvent the integration of the null geodesic equation. We re-examine the global cosmological effect on light propagation in the solar system. The round-trip time of a light ray/signal is given by the functions of not only the spacial coordinates but also the emission time or reception time of light ray/signal, which characterize the time-dependency of solutions. We also apply the obtained results to the secular increase in the astronomical unit, reported by Krasinsky and Brumberg (Celest. Mech. Dyn. Astron. 90:267, 2004), and we show that the leading order terms of the time-dependent component due to cosmological expansion is 9 orders of magnitude smaller than the observed value of dAU/dtd{\rm AU}/dt, i.e., 15±415 \pm 4 ~[m/century]. Therefore, it is not possible to explain the secular increase in the astronomical unit in terms of cosmological expansion.Comment: 13 pages, 2 figures, accepted for publication in General Relativity and Gravitatio

    Gaia Data Release 2 Mapping the Milky Way disc kinematics

    Get PDF
    Context. The second Gaia data release (Gaia DR2) contains high-precision positions, parallaxes, and proper motions for 1.3 billion sources as well as line-of-sight velocities for 7.2 million stars brighter than G(RVS) = 12 mag. Both samples provide a full sky coverage. Aims. To illustrate the potential of Gaia DR2, we provide a first look at the kinematics of the Milky Way disc, within a radius of several kiloparsecs around the Sun. Methods. We benefit for the first time from a sample of 6.4 million F-G-K stars with full 6D phase-space coordinates, precise parallaxes (sigma((omega) over bar)/(omega) over bar Results. Gaia DR2 allows us to draw 3D maps of the Galactocentric median velocities and velocity dispersions with unprecedented accuracy, precision, and spatial resolution. The maps show the complexity and richness of the velocity field of the galactic disc. We observe streaming motions in all the components of the velocities as well as patterns in the velocity dispersions. For example, we confirm the previously reported negative and positive galactocentric radial velocity gradients in the inner and outer disc, respectively. Here, we see them as part of a non-axisymmetric kinematic oscillation, and we map its azimuthal and vertical behaviour. We also witness a new global arrangement of stars in the velocity plane of the solar neighbourhood and in distant regions in which stars are organised in thin substructures with the shape of circular arches that are oriented approximately along the horizontal direction in the U - V plane. Moreover, in distant regions, we see variations in the velocity substructures more clearly than ever before, in particular, variations in the velocity of the Hercules stream. Conclusions. Gaia DR2 provides the largest existing full 6D phase-space coordinates catalogue. It also vastly increases the number of available distances and transverse velocities with respect to Gaia DR1. Gaia DR2 offers a great wealth of information on the Milky Way and reveals clear non-axisymmetric kinematic signatures within the Galactic disc, for instance. It is now up to the astronomical community to explore its full potential.Peer reviewe

    Gaia Data Release 2 Observations of solar system objects

    Get PDF
    CONTEXT: The Gaia spacecraft of the European Space Agency (ESA) has been securing observations of solar system objects (SSOs) since the beginning of its operations. Data Release 2 (DR2) contains the observations of a selected sample of 14,099 SSOs. These asteroids have been already identified and have been numbered by the Minor Planet Center repository. Positions are provided for each Gaia observation at CCD level. As additional information, complementary to astrometry, the apparent brightness of SSOs in the unfiltered G band is also provided for selected observations. AIMS: We explain the processing of SSO data, and describe the criteria we used to select the sample published in Gaia DR2. We then explore the data set to assess its quality. METHODS: To exploit the main data product for the solar system in Gaia DR2, which is the epoch astrometry of asteroids, it is necessary to take into account the unusual properties of the uncertainty, as the position information is nearly one-dimensional. When this aspect is handled appropriately, an orbit fit can be obtained with post-fit residuals that are overall consistent with the a-priori error model that was used to define individual values of the astrometric uncertainty. The role of both random and systematic errors is described. The distribution of residuals allowed us to identify possible contaminants in the data set (such as stars). Photometry in the G band was compared to computed values from reference asteroid shapes and to the flux registered at the corresponding epochs by the red and blue photometers (RP and BP). RESULTS: The overall astrometric performance is close to the expectations, with an optimal range of brightness G ∼ 12 − 17. In this range, the typical transit-level accuracy is well below 1 mas. For fainter asteroids, the growing photon noise deteriorates the performance. Asteroids brighter than G ∼ 12 are affected by a lower performance of the processing of their signals. The dramatic improvement brought by Gaia DR2 astrometry of SSOs is demonstrated by comparisons to the archive data and by preliminary tests on the detection of subtle non-gravitational effects
    corecore