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Abstract
Time-varying gravitomagnetic fields are considered within the linear post-
Newtonian approach to general relativity. A simple model is developed in
which the gravitomagnetic field of a localized mass–energy current varies
linearly with time. The implications of this temporal variation of the source
for the precession of test gyroscopes and the motion of null rays are briefly
discussed.

PACS number: 04.20.Cv

1. Introduction

Astronomical sources, such as neutron stars, generally rotate, but their rotation rates are seldom
uniform. For instance, the Earth’s rate of rotation decreases very slowly due mainly to tidal
friction; in fact, in this process the Earth loses angular momentum, which is then transferred
to the orbital motion of the moon around the Earth. The temporal variation of the proper
angular momentum of a massive body in turn generates a time-varying gravitomagnetic field
in accordance with the general theory of relativity. The purpose of this paper is to study
gravitomagnetic fields generated by the intrinsic temporal variability of sources; this issue was
ignored in a previous work on general gravitomagnetic fields of spinning masses [1]. Only a
beginning is made here, since the detailed study of the gravitomagnetic field resulting from a
realistic model of a variable source is beyond the scope of this first analysis.

The linear approximation scheme of general relativity is adopted throughout this paper.
Thus the spacetime metric tensor gµν is expressed as gµν = ηµν + hµν , where ηµν is the
Minkowski metric tensor with signature +2 and hµν is a first-order (‘weak’) perturbation. The
choice of the background global inertial coordinates xµ = (ct, r) is not unique; under a slight
transformation of coordinates xµ �→ xµ − εµ, we have hµν �→ hµν + εµ,ν + εν,µ, so that the
gravitational potentials are gauge-dependent quantities. However, the Riemann, Ricci and
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Einstein curvature tensors are gauge invariant. In particular the Einstein tensor may be written
as

Gµν = − 1
2 � h̄µν, (1)

where the trace-reversed potentials h̄µν are given by h̄µν = hµν − 1
2ηµνh. Here h =

tr(hµν),� = ηαβ∂α∂β and the transverse gauge condition

h̄µν
,ν = 0 (2)

has been imposed. The gravitational field equations, Gµν = (8πG/c4)Tµν , can then be
expressed as

� h̄µν = −16πG

c4
Tµν. (3)

The solution of this linear inhomogeneous equation is a superposition of the retarded solution

h̄µν = 4G

c4

∫
Tµν(ct − |r − r′|, r′)

|r − r′| d3r ′ (4)

plus the general solution of the homogeneous wave equation. The latter is ignored in this
analysis and we simply focus on equation (4) in what follows. Given a consistent model for
the source Tµν, ∂νT

µν = 0, h̄µν is thus determined and then

hµν = h̄µν − 1
2ηµνh̄, (5)

where h̄ = tr(h̄µν).
It is now necessary to introduce the slow-motion assumption that is needed in our linear

post-Newtonian approach to gravitoelectromagnetism (GEM). We require that all motions
within the source take place with speeds that are very small compared to c. Furthermore, all
contributions to the metric tensor of O(c−4) are neglected. It follows from equation (4) that
for the sources under consideration here, h̄00 = 4�/c2, h̄0i = −2Ai/c

2 and h̄ij = O(c−4). In
fact, �(t, r) is the gravito-electric potential and A(t, r) is the gravitomagnetic vector potential
such that

2

c

∂�

∂t
+ ∇ · A = 0, (6)

and the metric is given by

ds2 = −c2

(
1 − 2�

c2

)
dt2 − 4

c
(A · dr) dt +

(
1 +

2�

c2

)
δij dxi dxj . (7)

Our definition of GEM potentials is based on a special convention that preserves the
electromagnetic analogy as much as possible [2]. Moreover, it is useful to define
Aµ = (2�, A), so that h̄0µ = 2Aµ/c2, and the GEM Faraday tensor is then given by
Fµν = Aν,µ − Aµ,ν . It follows from these defintions and equation (3) that the Maxwell
equations for the GEM fields are satisfied [2]; that is, Fµν �→ (2E, B), F[µν,ρ] = 0 and

Fµν
,ν = 8πG

c
jµ, (8)

where jµ is the mass–energy current such that

cjµ = (T 00, T 0i ). (9)

Thus in the GEM approach adopted in this paper, T ij does not explicitly appear; however, its
existence is implicitly assumed such that the four dynamical equations

T µν
,ν = 0 (10)
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are always satisfied. The linear perturbation approach to GEM has been reviewed in [3].
The compact notation of equations (8) and (9) has been employed for simplicity, so that the
tensorial character of these equations is purely formal; that is, the background global inertial
frame is essentially fixed in this linear GEM treatment.

To study time-dependent gravitomagnetic fields caused by the intrinsic variability of the
source, it would be necessary to have a consistent model of a source with time-varying proper
angular momentum. This is rather complicated in general; however, a drastic simplification
occurs within the linear GEM framework via a simple toy model that is the subject of the
following section.

2. Toy model

It is an immediate consequence of equations (4) and (5) that if Tµν is independent of time,
then hµν is only a function of spatial variables and hence the spacetime of a time-independent
source is in general stationary. Let T ∗

µν represent the energy–momentum tensor of a time-
independent source and h̄∗

µν be the corresponding stationary solution of equation (4); then,
the time-independent GEM potentials are �∗(r) and A∗(r), while h̄∗

ij = O(c−4). A detailed
treatment of such configurations is contained in [4]. For time-varying GEM potentials, a
simple ansatz would involve a separation of temporal and spatial variables. Under what
conditions can

�(t, r) = ϕ(t)�∗(r), A(t, r) = f (t)A∗(r) (11)

represent acceptable GEM potentials? Equation (6) implies that dϕ/dt = 0, while we find
from direct substitution of equation (11) into equation (3) that d2f/dt2 = 0 and

T00 = ϕT ∗
00, T0i = f (t)T ∗

0i . (12)

It follows that our ansatz (11) is consistent with GEM equations provided that ϕ is constant
and f (t) is a linear function of time such that 2|A| � c2; moreover, the corresponding
Tij , ∂jT

j

i = (df/c dt)T ∗
0i , is expected to lead to h̄ij = O(c−4) via equation (4).

The mass–energy current (9) for the case of equation (12) is such that j, cj i = T 0i ,
is localized and divergenceless; therefore, its volume integral vanishes. This implies that
equation (11) is consistent with the retarded solution (4), since f (t) is just a linear function
of time. In addition, stresses Tij exist such that the source has proper dynamics in accordance
with equation (10); however, the GEM metric (7) depends only on � and A and hence the
nature of the stresses is of no consequence here. Specifically, these stresses may turn out to be
physically unrealistic; however, this is mitigated by the circumstance that the source leads to a
simple analytic solution that can be consistently employed within the linear GEM framework.
This is illustrated by the special example that is presented in the following section.

With ϕ constant and f (t) linear in time, the GEM fields are

E(r) = −ϕ∇�∗ − 1

2c

df

dt
A∗, B(t, r) = f (t)∇ × A∗, (13)

so that E is independent of time and only B is linearly dependent upon time. Thus the
gravitational analogue of the displacement current vanishes in this case, but our simple model
is ideally suited to help elucidate the gravitational analogue of the Faraday law of induction
[5]. Moreover, the linear dependence of the source upon time is consistent with the absence
of gravitational radiation in this case.

Many significant relativistic effects of astrophysical interest fall within the linear GEM
scheme; therefore, our simple model can provide useful results. In practice, the slow temporal
variation of the angular momentum of the source may not be linear; however, our linear model
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could furnish a first approximation. Some applications of our model are discussed in the rest
of this paper using a rather special nonstationary spacetime.

3. Special nonstationary spacetime

Far from any localized stationary source of mass M and angular momentum J ∗, the spacetime
metric can be expressed in form (7), where the dominant contributions to the GEM potentials
are given by

�∗ = GM

r
, A∗ = GJ ∗

c

Ĵ × r
r3

(14)

for r � GM/c2 and r � J ∗/(Mc). Here Ĵ is a fixed unit angular momentum vector of the
source. With these potentials, equation (7) is equivalent to the linear form of the Kerr metric
in isotropic Cartesian coordinates.

It follows from the results of the previous section that within the GEM framework, metric
(7) with

� = GM

r
, A = GJ(t)

c

Ĵ × r
r3

, (15)

J (t) = f (t)J ∗ (16)

represents the exterior field of a localized source of mass M and angular momentem J (t) that
varies linearly with time along the fixed axis Ĵ. Substituting equations (15) and (16) into
equation (3), one can find the effective source for these potentials; indeed,

T00 = Mc2δ(r), T0i = 1
2c[J(t) × ∇]iδ(r). (17)

Thus the mass–energy current is singular in this case and essentially confined to the origin of
spatial coordinates. On the other hand, equation (10) implies that

Tij = − 1

8π

[
(J̇ × ∇)i∇j

1

r
+ (J̇ × ∇)j∇i

1

r

]
, (18)

where J̇ = dJ/dt is a constant vector. The stresses (18) are time-independent and extend
throughout space, but fall off to zero as r−3 for r → ∞. As emphasized before, the influence
of the stresses on the spacetime metric is of O(c−4) and is therefore ignored in the linear
perturbation approach to GEM.

The localized mass–energy current that generates exterior GEM potentials (15) in an
astrophysical situation could be considered as a variant of Newton’s experiment with the
rotating bucket of water but on a vastly different scale. Imagine an initially stationary
configuration with angular momentum JI . At some initial time tI , the system undergoes
a linear spin-up (or spin-down) that ends at tF and the system then returns to a stationary
state for t > tF with angular momentum JF . The total mass–energy of the configuration
remains the same throughout. Thus equation (15) holds for all time and J is constant except
for t ∈ [tI , tF ], where

J = JI +
JF − JI

tF − tI
(t − tI ). (19)

Moreover, J̇ (t) is piecewise constant and hence

J̈ = JF − JI

tF − tI
[δ(t − tI ) − δ(t − tF )]. (20)
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This implies, via equation (3), that there are additional spatially extended but instantaneous
currents at tI and tF responsible for respectively turning on and off the temporal variation of
the source. That is, equation (17) holds except that T0i is modified at tI and tF ,

T0i = − 1

8πc

(
J̈ × r
r3

)
i

+
1

2
c(J × ∇)iδ(r). (21)

It is interesting to explore the influence of time-varying gravitomagnetic fields on some
standard consequences of general relativity. In the following subsections, we employ the
nonstationary linearized Kerr spacetime to discuss some aspects of spin precession and the
motion of null rays; the motion of test particles will be treated in [5]. For the sake of
simplicity, we limit our considerations to temporal intervals that are within [tI , tF ] and are
such that 2|A| � c2.

3.1. Gyroscope precession

The purpose of this subsection is to provide an estimate of the influence of intrinsic variability of
the source on gyro precession. A detailed treatment of gyro motion in the special nonstationary
gravitational field under consideration here on the basis of the Mathisson–Papapetrou–Dixon
equations is clearly beyond the scope of this work [6]. Instead, we concentrate on a free test
gyro held fixed outside the source with potentials given in equation (15). It follows from a
simple extension of previous results [6] that to linear order in the spin, the gyro precesses with
frequency B/c, where the gravitomagnetic field is given by

B = GJ(t)

cr3
[3(Ĵ · r̂)r̂ − Ĵ]. (22)

The resulting motion can be simply described via the introduction of a new temporal coordinate
τ given by dτ = f (t) dt .

For a test gyro in orbit about the source, the motion of the gyro spin is more complex;
nevertheless, it is possible to estimate the influence of a variable mass–energy current on
the gyro spin. For the Earth, the secular increase in the period of proper rotation P⊕ is
approximately linear in time and can be characterized by Ṗ⊕/P⊕ ≈ 3 × 10−10 per year.
This implies that the influence of the secular decrease of the Earth’s angular momentum on
the GP-B experiment [7] is entirely negligible. Indeed, the magnitude of the corresponding
net decrease in the strength of the gravitomagnetic field of the Earth over the course of the
GP-B experiment is about eight orders of magnitude smaller than the projected experimental
sensitivity of the GP-B [7].

The spin-curvature force on the test gyro is given by

Fα = − c

2
Rα

βµνu
βSµν, (23)

where uβ is the four-velocity of the gyro [6]. It follows that in the linear GEM framework and
to first order in spin, F 0 = 0 and

cF = −∇(S · B). (24)

Thus the classical spin-gravity coupling is recovered, except that now B is linearly dependent
upon time. We expect that the same holds for intrinsic spin with the time-dependent
Hamiltonian H = S · B/c; the time-dependent spin-rotation coupling has been considered
in [8]. It is straightforward to verify this coupling for photon spin via the rotation of the plane
of polarization of electromagnetic radiation propagating in the exterior field of the source.
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The general scheme given in [1] implies that the result is

θ = 1

c2

∫
B · dr, (25)

where the integration is carried out along the path of the null ray.
Imagine an electromagnetic ray that propagates along the axis of rotation of the source.

During the time that the ray travels from r1 to r2, the angular momentum of the source changes
linearly from J1 to J2 and the plane of polarization of the electromagnetic wave rotates by an
angle θ , where

θ = G

c3

(r2 − r1)

r1r2

(
J1

r1
+

J2

r2

)
. (26)

The standard Skrotskii result is recovered for J1 = J2 [1].

3.2. Time delay

We next examine the gravitomagnetic time delay of null geodesic rays in our model. The
results may be of astrophysical interest in pulsar timing, for instance, as pulsars generally lose
angular momentum due to external electromagnetic braking torques.

Within the linear GEM framework, the time delay �G of a null ray propagating from
P1 : (ct1, r1) to P2 : (ct2, r2) is

t2 − t1 = 1

c
|r2 − r1| + �G, (27)

where [9]

�G = 1

2c

∫ P2

P1

h̄αβkαkβ dζ. (28)

Here kα = dxα/dζ = (1, k̂) is the constant tangent vector of the unperturbed null ray and the
integration is performed along the straight line from P1 to P2. Thus �G = �GE + �GM, where
�GE is the familiar Shapiro time delay and

�GM = − 2

c3

∫ P2

P1

A · dr (29)

is the gravitomagnetic time delay [9].
It is interesting to work out �GM for the exterior field given by equation (15). The result

is

�GM = −2G

c4

Ĵ · (r̂1 × r̂2)

1 + r̂1 · r̂2

(
J1

r1
+

J2

r2

)
, (30)

where equations (A.3) and (A.4) of the appendix have been used. When the ray propagates
from P1 to P2, the angular momentum of the source varies linearly from J1 to J2; for J1 = J2

however, equation (30) reduces to formula (16) of [9].
The time delay of null rays in the presence of a cosmological constant has been similarly

calculated in [10]. This treatment has been erroneously criticized in a recent paper [11].
Contrary to the claim in [11], the argument in [10], as is evident from the context, was simply
based on the mathematical fact that for a null ray in Schwarzschild–de Sitter spacetime in
standard coordinates, the geometric path of the ray in space does not suffer an additional
deflection away from a straight line due to the presence of a cosmological constant—see, for
instance, equation (9) of [11].

6
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3.3. Deflection

Finally, for a null geodesic ray with tangent vector Kµ that travels from P1 to P2,K
µ(P2) −

Kµ(P1) = �µ, where

�µ = −
∫ P2

P1

�
µ
αβkαkβ dζ (31)

follows from the integration of the null geodesic equation in the linear GEM scheme. Using
the connection coefficients given in [3] for metric (7) with potentials (15), it is straightforward
to compute the integral in equation (31) along the unperturbed path of the ray. Thus
�µ = (�0,Σ) is given by

�0 = −2GM

c2
(QI0 + I1) +

6G

c3
(r1 × k̂) · [J1(QL0 + L1) +

1

c
J̇(QL1 + L2)], (32)

Σ = −2GM

c2
(r1 − Qk̂)I0 − 2G

c3L
(r1 × J2 − r2 × J1)I0

+
6G

c3
r1 × k̂[J1 · (r1L0 + k̂L1) +

1

c
J̇ · (r1L1 + k̂L2)]. (33)

Here Q = r1 · k̂, L = |r2 − r1| and

k̂ = 1

L
(r2 − r1), J̇ = c

L
(J2 − J1)Ĵ. (34)

The integrals I0, I1,L0,L1 and L2 are given in the appendix. It is interesting to note that

Σ · k̂ = 2GJ̇

c4
r1 · (k̂ × Ĵ)I0. (35)

The result of this calculation may be of interest in connection with the significant advances
that are expected to occur in microarcsecond astrometry in the near future [12].

4. Discussion

The gravitational field equations have solutions in which the mass–energy and angular
momentum of the source vary with time as a consequence of emission or absorption of
radiation. However, the present paper is devoted to nonradiative situations involving the slow
temporal variation of the angular momentum of the source. A method is presented to estimate
the influence of such variability on gravitomagnetic phenomena.

The main result of this work is based on the observation that within the linear GEM
framework it is possible to transform a localized stationary configuration to one with a
gravitomagnetic field that varies linearly with time. Starting with the special nonstationary
spacetime corresponding to the linearized Kerr metric in isotropic Cartesian coordinates, the
consequences of the linear temporal variation of the gravitomagnetic vector potential are
explored in some situations of physical interest such as the GP-B experiment, the rotation
of plane of polarization of electromagnetic waves and the time delay as well as deflection
of electromagnetic signals. However, a proper discussion of the methods needed to deduce
observable effects from the results presented here is beyond the scope of this work.

Appendix

The purpose of this appendix is to evaluate the integrals

In =
∫ L

0

ζ n dζ

r3
, Lm =

∫ L

0

ζm dζ

r5
(A.1)
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for n = 0, 1 and m = 0, 1, 2. Here

r(ζ ) = r1 + k̂ζ, (A.2)

while k̂ and L have been defined in section 3. These integrals can be computed using formulae
2.263 and 2.264 given respectively on pages 82 and 83 of [13]. We find that

I0 = 1

δ
k̂ · (r̂2 − r̂1), I1 = r1

δ
(1 − r̂1 · r̂2), (A.3)

where δ = r2
1 − Q2,Q = k̂ · r1 as before, and hence

δL2 = r2
1 r2

2 [1 − (r̂1 · r̂2)
2]. (A.4)

Furthermore,

L0 = 1

3δ

(
2I0 +

L + Q

r3
2

− Q

r3
1

)
, (A.5)

L1 = −QL0 − 1

3

(
1

r3
2

− 1

r3
1

)
, (A.6)

L2 = 1

2
r2

1L0 − 1

2
QL1 − 1

2

L

r3
2

. (A.7)
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