89 research outputs found

    Two-phase modeling of metals solidification: A numerical approach for the thermo-mechanical problem

    Get PDF
    Reprinted with permission from MATERIALS PROCESSING AND DESIGN: Modeling, Simulation and Applications - NUMIFORM 2004 - Proceedings of the 8th International Conference on Numerical Methods in Industrial Forming Processes; doi:10.1063/1.1766689. Copyright 2004, American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of PhysicsInternational audienceAs an approach towards a better modelling of solidification problems, we present the basic assumptions and implementation of a thermo-mechanical two-phase model that considers the solidifying alloy as a binary mixture made of a liquid and a solid phase. Macroscopic mass and momentum balances are obtained considering that, at the microscopic level, the liquid is Newtonian whereas the solid is a power law fluid. Assuming local thermal equilibrium, a single equation for the conservation of the mixture energy is then written. The numerical implementation in a 2D finite element code is then detailed. Lastly, some examples of isothermal simulations of academic tests and application examples are discussed. They particularly enlighten the ability of the formulation to describe the mixture evolution over the whole solidification interva

    Développement d'un code éléments finis pour simuler le soudage par ultrasons de matériaux composites = Development of a Finite element code for simulating the ultrasonic welding of composite materials

    Get PDF
    National audienceLe développement récent des matériaux composites à matrices thermoplastiques c'est accompagné de nouveaux moyens d'assemblages. Nous nous concentrons ici sur le soudage par ultrasons. Afin d'étudier l'influence des paramètres procédé sur la qualité d'une soudure, nous proposons une modélisation puis une simulation du procédé. La modélisation se fait à l'aide de deux problèmes mécaniques et d'un problème thermique. Un code de simulation multiphysique a été développé afin de résoudre ces trois problèmes. L'évolution que subit l'interface est simulé à l'aide d'une méthode de level-set et de contact unilatéral par pénalité. Les simulations en 2D sans modélisation du contact montrent que des porosités sont piégées à l'interface. Ceci est confirmé par les essais de soudage statique (sans mouvement de l'outil). Les simulations avec modélisation du contact permettent de mieux décrire l'écrasement à l'interface mais montrent des lacunes physiques. Le soudage dynamique avec avance de l'outil est un variant du procédé permettant de limiter les porosités à l'interface. La simulation de l'écoulement tridimensionnel qui en résulte est en cours. Elle devrait permettre d'expliquer la meilleure qualité de la soudure

    Simulation numérique d'impact en dynamique rapide de matériaux hyper-élastiques par la méthode X-FEM

    Get PDF
    National audienceLa simulation numérique en dynamique rapide de structures composées de matériaux hyper-élastiques peut s’avérer fastidieuse surtout si l’on souhaite obtenir une bonne qualité de résultats. La distorsion excessive des éléments finis du maillage au cours du temps, qui conduit à une dégradation du pas de temps critique, impose par exemple l’utilisation de techniques de type ALE. Nous proposons dans cet article une méthode alternative consistant à utiliser un maillage régulier unique via la méthode X-FEM et dont le principal atout est de simplifier les procédures de remaillage

    Behavior of a net of fibers linked by viscous interactions: theory and mechanical properties

    Get PDF
    International audienceThis paper presents an investigation of the macroscopic mechanical behavior of highly concentrated fiber suspensions for which the mechanical behavior is governed by local fiber-fiber interactions. The problem is approached by considering the case of a net of rigid fibers of uniform length, linked by viscous point interactions of power-law type. Those interactions may result in local forces and moments located at the contacting point between two fibers, and respectively power-law functions of the local linear and angular velocity at this point. Assuming the existence of an elementary representative volume which size is small compared to the size of the whole structure, the fiber net is regarded as a periodic assembly of identical cells. Macroscopic equilibrium and constitutive equations of the equivalent continuum are then obtained by the discrete and periodic media homogenization method, based on the use of asymptotic expansions. Depending on the order of magnitude of local translational viscosities and rotational viscosities, three types of the equivalent continua are proved to be possible. One of them leads to an effective Cosserat medium, the other ones being usual Cauchy media. Lastly, formulations that enable an effective computation of constitutive equations are detailed. They show that the equivalent continuum behaves like an anisotropic power-law fluid

    Two-Phase Approach for Solidification Problems: Modelling the Mushy Zone Deformation

    No full text
    International audienceThis paper exposes the development of a two-phase model accounting for mass, momentum and energy transfer, especially dedicated to the analysis of the thermo-mechanical behavior of metallic alloys in the mushy state. Macroscopic balance equations are first derived from local ones by the use of a spatial averaging method. Constitutive equations of both the liquid and the solid phases as well as interfacial exchange terms are then expressed by the mean of phenomenological considerations. Lastly, the resolution strategy is detailed

    Kinetic Theory Microstructure Modeling in Concentrated Suspensions

    Get PDF
    When suspensions involving rigid rods become too concentrated, standard dilute theories fail to describe their behavior. Rich microstructures involving complex clusters are observed, and no model allows describing its kinematics and rheological effects. In previous works the authors propose a first attempt to describe such clusters from a micromechanical model, but neither its validity nor the rheological effects were addressed. Later, authors applied this model for fitting the rheological measurements in concentrated suspensions of carbon nanotubes (CNTs) by assuming a rheo-thinning behavior at the constitutive law level. However, three major issues were never addressed until now: (i) the validation of the micromechanical model by direct numerical simulation; (ii) the establishment of a general enough multi-scale kinetic theory description, taking into account interaction, diffusion and elastic effects; and (iii) proposing a numerical technique able to solve the kinetic theory description. This paper focuses on these three major issues, proving the validity of the micromechanical model, establishing a multi-scale kinetic theory description and, then, solving it by using an advanced and efficient separated representation of the cluster distribution function. These three aspects, never until now addressed in the past, constitute the main originality and the major contribution of the present paper

    High genetic diversity at the extreme range edge: nucleotide variation at nuclear loci in Scots pine (Pinus sylvestris L.) in Scotland

    Get PDF
    Nucleotide polymorphism at 12 nuclear loci was studied in Scots pine populations across an environmental gradient in Scotland, to evaluate the impacts of demographic history and selection on genetic diversity. At eight loci, diversity patterns were compared between Scottish and continental European populations. At these loci, a similar level of diversity (θsil=~0.01) was found in Scottish vs mainland European populations, contrary to expectations for recent colonization, however, less rapid decay of linkage disequilibrium was observed in the former (ρ=0.0086±0.0009, ρ=0.0245±0.0022, respectively). Scottish populations also showed a deficit of rare nucleotide variants (multi-locus Tajima's D=0.316 vs D=−0.379) and differed significantly from mainland populations in allelic frequency and/or haplotype structure at several loci. Within Scotland, western populations showed slightly reduced nucleotide diversity (πtot=0.0068) compared with those from the south and east (0.0079 and 0.0083, respectively) and about three times higher recombination to diversity ratio (ρ/θ=0.71 vs 0.15 and 0.18, respectively). By comparison with results from coalescent simulations, the observed allelic frequency spectrum in the western populations was compatible with a relatively recent bottleneck (0.00175 × 4Ne generations) that reduced the population to about 2% of the present size. However, heterogeneity in the allelic frequency distribution among geographical regions in Scotland suggests that subsequent admixture of populations with different demographic histories may also have played a role

    Growth factors in multiple myeloma: a comprehensive analysis of their expression in tumor cells and bone marrow environment using Affymetrix microarrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiple myeloma (MM) is characterized by a strong dependence of the tumor cells on their microenvironment, which produces growth factors supporting survival and proliferation of myeloma cells (MMC). In the past few years, many myeloma growth factors (MGF) have been described in the literature. However, their relative importance and the nature of the cells producing MGF remain unidentified for many of them.</p> <p>Methods</p> <p>We have analysed the expression of 51 MGF and 36 MGF receptors (MGFR) using Affymetrix microarrays throughout normal plasma cell differentiation, in MMC and in cells from the bone marrow (BM) microenvironment (CD14, CD3, polymorphonuclear neutrophils, stromal cells and osteoclasts).</p> <p>Results</p> <p>4/51 MGF and 9/36 MGF-receptors genes were significantly overexpressed in plasmablasts (PPC) and BM plasma cell (BMPC) compared to B cells whereas 11 MGF and 11 MGFR genes were overexpressed in BMPC compared to PPC. 3 MGF genes (AREG, NRG3, Wnt5A) and none of the receptors were significantly overexpressed in MMC versus BMPC. Furthermore, 3/51 MGF genes were overexpressed in MMC compared to the the BM microenvironment whereas 22/51 MGF genes were overexpressed in one environment subpopulation compared to MMC.</p> <p>Conclusions</p> <p>Two major messages arise from this analysis 1) The majority of MGF genes is expressed by the bone marrow environment. 2) Several MGF and their receptors are overexpressed throughout normal plasma cell differentiation. This study provides an extensive and comparative analysis of MGF expression in plasma cell differentiation and in MM and gives new insights in the understanding of intercellular communication signals in MM.</p

    Exome sequencing identifies germline variants in DIS3 in familial multiple myeloma

    Get PDF
    [Excerpt] Multiple myeloma (MM) is the third most common hematological malignancy, after Non-Hodgkin Lymphoma and Leukemia. MM is generally preceded by Monoclonal Gammopathy of Undetermined Significance (MGUS) [1], and epidemiological studies have identified older age, male gender, family history, and MGUS as risk factors for developing MM [2]. The somatic mutational landscape of sporadic MM has been increasingly investigated, aiming to identify recurrent genetic events involved in myelomagenesis. Whole exome and whole genome sequencing studies have shown that MM is a genetically heterogeneous disease that evolves through accumulation of both clonal and subclonal driver mutations [3] and identified recurrently somatically mutated genes, including KRAS, NRAS, FAM46C, TP53, DIS3, BRAF, TRAF3, CYLD, RB1 and PRDM1 [3,4,5]. Despite the fact that family-based studies have provided data consistent with an inherited genetic susceptibility to MM compatible with Mendelian transmission [6], the molecular basis of inherited MM predisposition is only partly understood. Genome-Wide Association (GWAS) studies have identified and validated 23 loci significantly associated with an increased risk of developing MM that explain ~16% of heritability [7] and only a subset of familial cases are thought to have a polygenic background [8]. Recent studies have identified rare germline variants predisposing to MM in KDM1A [9], ARID1A and USP45 [10], and the implementation of next-generation sequencing technology will allow the characterization of more such rare variants. [...]French National Cancer Institute (INCA) and the Fondation Française pour la Recherche contre le Myélome et les Gammapathies (FFMRG), the Intergroupe Francophone du Myélome (IFM), NCI R01 NCI CA167824 and a generous donation from Matthew Bell. This work was supported in part through the computational resources and staff expertise provided by Scientific Computing at the Icahn School of Medicine at Mount Sinai. Research reported in this paper was supported by the Office of Research Infrastructure of the National Institutes of Health under award number S10OD018522. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors thank the Association des Malades du Myélome Multiple (AF3M) for their continued support and participation. Where authors are identified as personnel of the International Agency for Research on Cancer / World Health Organization, the authors alone are responsible for the views expressed in this article and they do not necessarily represent the decisions, policy or views of the International Agency for Research on Cancer / World Health Organizatio

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
    corecore