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Abstract. As an approach towards a better modelling of solidification problems, we present the basic assumptions and 

implementation of a thermo-mechanical two-phase model that considers the solidifying alloy as a binary mixture made 

of a liquid and a solid phase. Macroscopic mass and momentum balances are obtained considering that, at the 

microscopic level, the liquid is Newtonian whereas the solid is a power law fluid. Assuming local thermal equilibrium, a 

single equation for the conservation of the mixture energy is then written. The numerical implementation in a 2D finite 

element code is then detailed. Lastly, some examples of isothermal simulations of academic tests and application 

examples are discussed. They particularly enlighten the ability of the formulation to describe the mixture evolution over 

the whole solidification interval. 

 

INTRODUCTION 

The generation of species macrosegregations is of 

central importance in the numerical simulation of 

metal casting processes for it strongly influences the 

final properties of the cast products and parts. They 

arise from the coupling between the phase change and 

the transport of chemical species in the liquid due to 

the thermo-mechanical conditions of solidification. 

Macrosegregations therefore strongly depend on the 

motion of the liquid with respect to the solid. As 

demonstrated by Flemings [ 1], in some cases the 

deformation of the solid itself plays an important role 

in the liquid motion, and consequently on 

macrosegregations. However, in most 

macrosegregations simulations the solid phase is 

assumed to be rigid. It is then essential to develop new 

formulations that would be effectively two-phase 

formulations, able to compute the concurrent 

deformation and/or motion of the solid phase, and the 

liquid flow. The complex and heterogeneous 

phenomena occurring at the microscopic scale have to 

be described through relevant macroscopic continuous 

equations. Lastly, special numerical formulations have 

to be developed for the solving of those still original 

problems. 

MACROSCOPIC TWO-PHASE MODEL 

General Macroscopic Balance Equations 

At the microscopic scale, inside each phase, the 

thermo-mechanical evolution is assumed to be 

governed by the usual mass, momentum and energy 

balances. In this work, the balance equations of the 

mixture, at the (macroscopic) scale of an elementary 

representative volume, are obtained using the spatial 

averaging method on a fixed control volume V0. This 

method is now rather classical and will not be detailed 

here. See for example references [ 2], [ 3], [ 4], [ 5] for 

further details on its basic principles. 

The solidifying alloy in the mushy state will be 

considered as a saturated two phase medium, that is to 

say that both phases volume fractions always satisfy 

the following relationship: 

 1=+ ls gg  (1) 
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For the sake of simplicity, inertia terms are not 

considered in the momentum balances and the only 

external volume force is assumed to be gravity. 

Furthermore, all the additional terms due to local 

fluctuations of variables are considered as negligible. 

Particularly, as done in [ 3] and [ 5], local fluctuations 

of density ρk are neglected, what leads to several 

simplifications. Doing so, and applying the spatial 

averaging process to microscopic balance equations of 

each phase, one obtains the set of macroscopic 

equations summarised in table 1. 

TABLE 1.  macroscopic balance equations of the two-phase medium for phase k. 
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k
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k gg
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Constitutive Modelling 

The spatial averaging method used in this paper is 

efficient to obtain in a simple way the macroscopic 

governing equations of the semi-solid alloy but does 

not enable to go further in the specifications of the 

macroscopic model. Reliable constitutive equations 

would require more sophisticated approaches such as 

homogenization [ 6], [ 7] associated with numerical 

simulation at the microscopic scale, but this is not in 

the scope of this work. The full definition of the two-

phase model will simply be based on further 

constitutive assumptions. 

Thermal Behavior 

One important assumption of our approach is the 

local thermal equilibrium assumption. Such an 

assumption can be proved to be valid in this case 

according to the work of Auriault and Ene [ 8]. 

Actually, the liquid and the solid do not exhibit too 

different thermal properties nor strong thermal 

interfacial barriers, so at the macroscopic scale, their 

average temperature is the same: 

 TTT ls ==  (5) 

A single temperature field T can therefore be 

defined, and the mixture energy balance can be 

obtained by summing equations (4) of each phase, and 

solved in terms of the average specific enthalpy H: 

 l
l

s
s hghgH +=  (6) 

This leads to the following global energy equation, 

which will not be further detailed in this paper.

 0=⋅∇+⋅∇+
∂
∂

qvhh
t

ρρ  (7) 

Mechanical Behavior 

Both phases densities are considered as constant so 

that ρk equals ρk, its intrinsic average density. This is 

valid as long as the temperature range of the 

solidification interval remains narrow enough. At the 

microscopic level, it is generally admitted that the 

liquid metal is an incompressible Newtonian fluid with 

a very low viscosity. We therefore can write: 

 )(ε2, llllll withp vsIsσ &µ=−=  (8) 

where pl denotes the hydrostatic pressure, sl the 

deviatoric part of σσσσl, µl the viscosity of the liquid, and 

)( lvε&  the strain rate tensor. As done by Ganesan and 

Poirier [ 9] and Rappaz et al. [ 5], we adopt the 

following model for the macroscopic stress tensor: 

 ( ) l
llll

l pgpand −== ,ε2 vΣ &µ  (9) 

Experimental studies on the behavior of metallic 

alloys at high temperature show that the behavior of 

the solid phase is well described by constitutive 

equations of the Norton-Hoff type: 
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where K (Pa.sm) and m are the consistency and the 

strain rate sensitivity and eqε&  denotes the Von Mises 

equivalent strain rate. The behavior is then defined by 



the relation between the equivalent stress (in the Von 

Mises sense) and the equivalent strain rate: 

 
m

eqseq K εσ &=  (11) 

For solid fractions above the coherency fraction, using 

the analysis of Geindreau and Auriault [ 7], we get that 

the stress tensor IIsΣ
l

sss
s pgp +−=  is a degree 

m homogeneous function with respect to the strain rate 

tensor ( )svε& . This property shows that the solid phase 

can be modelled as a compressible power law fluid. 

We therefore adopt a compressible viscoplastic 

formalism [ 10], [ 1]. Constitutive equations are the 

ones described by (11), but with equivalents defined as 
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Those equations require two rheological functions A 

and B that depend on the solid volume fraction and for 

which several models can be found [ 10], [ 1]. The 

constitutive equations of the solid phase at the 

macroscopic scale therefore read 

 ( ) ( ) ( )( )IεεΣ &&& trε
3
1

9
11

1s
eq ABA

m

s
s K −+=

−
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For lower solid fractions, the solid phase will be 

supposed to be stress free. 

Momentum Exchange 

According to the works of Ni and Beckermann [ 3], 

Mk can be partitioned as: 

 
p
k

d
kk MMM +=  (14) 

the first part being the contribution of deviatoric 

stresses and the second one the contribution of the 

isotropic part, and it can easily be shown that  

 0=+ d
s

d
l MM  and 0=+ p

s
p
l MM  (15) 

The liquid being a Newtonian incompressible fluid 

with a very low viscosity, we will assume that the 

pressure equilibrium in the liquid phase is almost 

instantaneous. Subsequently, the interfacial pressures 

in both phases )( kp  equal the intrinsic average value 

of liquid pressure, that is its microscopic value: 

 l
l

sl pppp ===  (16) 

p
kM  can therefore be expressed as follows, using (1) 

and the general theorems of spatial averaging: 

 s
l

l
lp

l
p
s gpgp ∇=∇−=−= MM  (17) 

In what follows, pl will be denoted p and referred to as 

the interstitial pressure. 

Depending on the solid fraction, the dissipative 

terms 
d
kM  are generally interpreted either as the drag 

force exerted by the liquid on the isolated solid grains 

[ 3] or the filtration force exerted by the liquid flowing 

through the solid, considered as a rigid porous medium 

[ 7], [ 5]. In both cases, d
kM  can be modelled by a law 

of the generic type: 

 ( ) ( )slll
d
l

d
s ggC vvMM −−=−=  (18) 

where the factor C may be defined through the usual 

permeability factor K as: 

 
K
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Mass Exchange 

As proposed by Wang and Beckerman [ 4], the 

mass exchange term Γs=-Γl could be calculated from 

the species concentrations of both phases at the liquid-

sold interface. Nevertheless, as first rough approach, 

we will assume that the solidification path is given so 

that the evolution of the solid fraction (2) is such as: 
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Final Equation Set Adopted 

Table 2 sums up the adopted equations set for this 

two-phase formulation, obtained by introducing the 

constitutive models in equations (2), (3) and (4). The 

mixture global mass conservation balance (23) was 

obtained by summing both phases mass balances. 

Because of the form of 
d
sM  (18) and of the liquid 

phase constitutive equations, the liquid phase motion is 

described through its average velocity lv , whereas 

the solid phase motion is described through the 

intrinsic average velocity s
v . 



TABLE 2. Final equations set of the two-phase formulation. 

Mechanical Problem 
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Solid Fraction Evolution 

Mass, solid phase 

s

s
s

s
s g
t

g

ρ
Γ=⋅∇+

∂
∂

)( v  
(24) 

Thermal Problem 

Enthalpy, mixture 
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NUMERICAL IMPLEMENTATION 

The latter formulation was implemented in the two-

dimensional code R2SOL, finite element code using 

linear triangles and based on the P1+/P1 mixed 

formulation [ 12]. Up to now, the two-phase approach 

has been validated for isothermal situations only, so 

only the implementation of the isothermal mechanical 

problem will be discussed here. For simplicity, no 

gravity terms were accounted in what follows, but the 

extension is straightforward. 

In what follows, vs will be denoted u and lv  will 

be denoted v. The boundary conditions of the 

mechanical problem are 
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If V is the space of “kinematically admissible” velocity 

fields and V0 is the space of “zero kinematically 

admissible” velocity fields. The virtual power 

principle states that the solution of the problem 

( ) ( )Ω×∈ 2,, LVpvu  must fulfil: 
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It is a mixed velocity-pressure formulation involving 

two velocity fields that requires interpolation functions 

satisfying the Brezzi-Babuska conditions. Using the 

previous formulation developed in the one-phase case, 

we adopt a “(P1+)²/P1” formulation. On each finite 

element, the velocity fields u and v are approximated 

as follows: 
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FIGURE 1.  Two-phase simple compression test geometry. 

A and B are the additional bubble degrees of freedom 

located at the center of each element. The bubble 

interpolation function Nb is linear on each sub-triangle, 

and is constructed such as Nb=0 on the edges of the 

element and Nb=1 at the center of the triangle. The 

interstitial pressure p is approximated by a classical 

linear interpolation. Weight functions u*, v* and p* 

are approximated in the same way. Thanks to the 

particular shape of the bubble functions, the additional 

degrees of freedom A and B can be eliminated from 

the discrete system at the elements level. This is 

obtained by the same process as the one described in 

[ 12] for a one-phase problem, except that the size of 

the local system to solve is double, due to the two 



velocity fields. The resulting non linear discretized 

system is then solved by the means of a Newton-

Raphson iterative method. 

VALIDATION TESTS 

Comparison With An Exact Solution 

The two-phase mechanical solver was first 

validated with respect to an analytical solution. The 

latter was calculated from homogeneous simple 

compression problem depicted in figure 1. Both the 

liquid and the solid phases behavior are assumed linear 

and compressible: 

 ( )( )ss
s

s K εIεΣ && βα += tr  (29) 

 ( )( )sl
l

l baK εIεΣ && += tr  (30) 

gl is assumed constant over the whole domain. This 

produces a simple compression like kinematics for 

both phases with an imposed strain rate hVimp /=ε& . 

The normal stress on each phase is supposed to be null 

on the right face. The resolution leads to the following 

expressions for the phases velocity and pressure fields: 
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FIGURE 2.  relative velocity and interstitial pressure along 

the x direction, numerical vs analytical, 1D test case. 

Results exposed in figure 2, correspond to a test 

performed at Vimp=-1m.s-1 on a sample with L=5m, 

h=1m, and: gs=0.8, Ks=100 Pa.s, Kl=0.1Pa.s, α=0.189, 
β=0.1, a=-0.667, b=2, C=20. 

As visible from figure 2, numerical results 

perfectly match the analytical solution both in terms of 

relative velocity s
ll g vv −/  and of interstitial 

pressure. Such results were obtained for several sets of 

rheological parameters and remain valid for any value 

of the interaction coefficient C. 

One other important thing to check is that the 

formulation remains valid over the whole solidification 

interval, that is to say for any value of gl. Figure 3 

shows the evolution of the relative velocity profile 

with the liquid fraction. When gl increases up to 1, the 

mixture becomes more and more monophasic, which 

was expected. The same trend was observed for very 

low liquid fractions. Figure 3 thus enlighten the ability 

of our formulation to simulate the deformation over 

the whole solidification interval. It is worth noting that 

no special treatment was needed for the limiting cases. 

 

FIGURE 3.  Relative velocity profiles for different gl. 



Liquid Redistribution 

This last test aims at simulating a situation 

frequently encountered in continuous casting 

problems. It consists in imposing a deformation at the 

surface of a partially solidified alloy on a small part of 

its surface (fig. 4). It thus simulates the action of a roll. 

Symmetry conditions are imposed on all the 

boundaries except on the upper face, which is a free 

surface. We perform here again an isothermal 

calculation, but imposing an initial distribution of 

liquid fraction along y described in figure 4. Here, the 

solid phase rheology is still somewhat arbitrary, but it 

is now non-linear, with a strain rate sensitivity of 0.2. 

The interaction coefficient is modelled by a classical 

Carman-Kozeny law and reaches very high value in 

the solidified zone. 

 

FIGURE 4.  Redistribution of the liquid inside a semi-solid 

domain with an initial fraction distribution. 

Black arrows plotted in the zoom of fig. 4 show the 

relative average velocity vectors s
ll g vv − . Results 

show that the applied pressure leads to a redistribution 

of the liquid with respect to the solid. In the zone 

where the solid in under pressure (left side), it 

undergoes densification and the liquid is rejected to the 

right side of the sample.  

CONCLUSIONS 

In this paper, the macroscopic conservation 

equations for a two-phase continuum have been briefly 

discussed and summarized. A two-dimensional finite 

element resolution has been proposed and validated on 

an analytical test. The ability of the formulation to 

represent the deformation of a saturated solid skeleton, 

using a “sponge”-like model has been demonstrated. In 

the future, the model will be extended to solidification, 

involving mass exchange between the two phases and 

to the transport of chemical species, which is of great 

importance in casting processes. 
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