2,947 research outputs found

    Experimental Evaluation of Ultrasonic Simulation Techniques in Anisotropic Material

    Get PDF
    The high performance of the available computer technology provides the possibility to simulate the real life for ultrasonic inspections in terms of primary ultrasonic data like rf-time signals. For isotropic material codes like Generalized Point Source Synthesis (GPSS) or Elastodynamic Finite Integration Technique (EFIT) and the theoretical predictions correlate well with experimental results. Recently, the codes mentioned above have been extended to operate also in anisotropic material. In a first step the codes GPSS and EFIT have been expanded to work in materials of parallel oriented columnar grain structure with transversely isotropic symmetry. In order to verify these codes a set of experiments was carried out on weld metal pads and on welds of defined grain structure. Radiation, propagation, reflexion on boundaries and interaction of the sound field with defects for the modes “through transmission” and “pulse echo” were simulated and compared with the experiment

    Commentary and Worked Examples to EN 1993-1-10 "Material Toughness and Through Thickness Properties" and Other Toughness Oriented Rules in EN 1993

    Get PDF
    This commentary gives explanations and worked examples to the design rules in Eurocode 3 that are influenced by the strength and toughness properties of the structural steels used. It is a commentary and background document to EN 1993-1-10 "Material toughness and through thickness properties" and its extension in EN 1993-1-12 "Design rules for high-strength steels", where toughness properties are explicitly addressed. It however provides also background to other parts of EN 1993, e.g. to EN 1993-1-1 "Design of steel structures - Basic rules and rules for buildings", where the design rules are related only to strength properties as the yield strength and the tensile strength without explicitly mentioning the role of toughness that is hidden behind the resistance formulae. Finally it gives some comments to chapter 6 of EN 1998-1: "Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings".JRC.G.5-European laboratory for structural assessmen

    MicroRNA-196a links human body fat distribution to adipose tissue extracellular matrix composition

    Get PDF
    Abstract Background: Abdominal fat mass is associated with metabolic risk whilst gluteal femoral fat is paradoxically protective. MicroRNAs are known to be necessary for adipose tissue formation and function but their role in regulating human fat distribution remains largely unexplored. Methods: An initial microarray screen of abdominal subcutaneous and gluteal adipose tissue, with validatory qPCR, identified microRNA-196a as being strongly differentially expressed between gluteal and abdominal subcutaneous adipose tissue. Findings: We found that rs11614913, a SNP within pre-miR-196a-2 at the HOXC locus, is an eQTL for miR-196a expression in abdominal subcutaneous adipose tissue (ASAT). Observations in large cohorts showed that rs11614913 increased waist-to-hip ratio, which was driven specifically by an expansion in ASAT. In further experiments, rs11614913 was associated with adipocyte size. Functional studies and transcriptomic profiling of miR-196a knock-down pre-adipocytes revealed a role for miR-196a in regulating pre-adipocyte proliferation and extracellular matrix pathways. Interpretation: These data identify a role for miR-196a in regulating human body fat distribution.: This work was supported by the Medical Research Council and Novo Nordisk UK Research Foundation (G1001959) and Swedish Research Council. We acknowledge the OBB-NIHR Oxford Biomedical Research Centre and the British Heart Foundation (BHF) (RG/17/1/32663). Work performed at the MRC Epidemiology Unit was funded by the United Kingdom's Medical Research Council through grants MC_UU_12015/1, MC_PC_13046, MC_PC_13048 and MR/L00002/1

    Genome-wide association study meta-analysis for quantitative ultrasound parameters of bone identifies five novel loci for broadband ultrasound attenuation.

    Get PDF
    Osteoporosis is a common and debilitating bone disease that is characterised by low bone mineral density, typically assessed using dual-energy X-ray absorptiometry. Quantitative ultrasound (QUS), commonly utilising the two parameters velocity of sound (VOS) and broadband ultrasound attenuation (BUA), is an alternative technology used to assess bone properties at peripheral skeletal sites. The genetic influence on the bone qualities assessed by QUS remains an under-studied area. We performed a comprehensive GWAS including low-frequency variants (MAF ≄0.005) for BUA and VOS using a discovery population of individuals with whole-genome sequence (WGS) data from the UK10K project (n=1,268). These results were then meta-analysed with those from two deeply imputed GWAS replication cohorts (n=1,610 and 13,749). In the gender-combined analysis, we identified eight loci associated with BUA and five with VOS at the genome-wide significance level, including three novel loci for BUA at 8p23.1 (PPP1R3B), 11q23.1 (LOC387810) and 22q11.21 (SEPT5) (P = 2.4 × 10-8-1.6 × 10-9). Gene-based association testing in the gender-combined dataset revealed eight loci associated with BUA and seven with VOS at the genome-wide significance level, with one novel locus for BUA at FAM167A (8p23.1) (P = 1.4 × 10-6). An additional novel locus for BUA was seen in the male-specific analysis at DEFB103B (8p23.1) (P = 1.8 × 10-6). Fracture analysis revealed significant associations between variation at the WNT16 and RSPO3 loci and fracture risk (P = 0.004 and 4.0 × 10-4 respectively). In conclusion, by performing a large GWAS meta-analysis for QUS parameters of bone using a combination of WGS and deeply imputed genotype data, we have identified five novel genetic loci associated with BUA

    Measurement of the Spin-Dependence of the pbar-p Interaction at the AD-Ring

    Full text link
    We propose to use an internal polarized hydrogen storage cell gas target in the AD ring to determine for the first time the two total spin-dependent pbar-p cross sections sigma_1 and sigma_2 at antiproton beam energies in the range from 50 to 450 MeV. The data obtained are of interest by themselves for the general theory of pbar-p interactions since they will provide a first experimental constraint of the spin-spin dependence of the nucleon-antinucleon potential in the energy range of interest. In addition, measurements of the polarization buildup of stored antiprotons are required to define the optimum parameters of a future, dedicated Antiproton Polarizer Ring (APR), intended to feed a double-polarized asymmetric pbar-p collider with polarized antiprotons. Such a machine has recently been proposed by the PAX collaboration for the new Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt, Germany. The availability of an intense stored beam of polarized antiprotons will provide access to a wealth of single- and double-spin observables, thereby opening a new window on QCD spin physics.Comment: 51 pages, 23 figures, proposal submitted to the SPS committee of CER

    Assessing the causal association of glycine with risk of cardio-metabolic diseases

    Get PDF
    Circulating levels of glycine have previously been associated with lower incidence of coronary heart disease (CHD) and type 2 diabetes (T2D) but it remains uncertain if glycine plays an aetiological role. We present a meta-analysis of genome-wide association studies for glycine in 80,003 participants and investigate the causality and potential mechanisms of the association between glycine and cardio-metabolic diseases using genetic approaches. We identify 27 genetic loci, of which 22 have not previously been reported for glycine. We show that glycine is genetically associated with lower CHD risk and find that this may be partly driven by blood pressure. Evidence for a genetic association of glycine with T2D is weaker, but we find a strong inverse genetic effect of hyperinsulinaemia on glycine. Our findings strengthen evidence for a protective effect of glycine on CHD and show that the glycine-T2D association may be driven by a glycine-lowering effect of insulin resistance

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+→Ό+ÎœW^+ \rightarrow \mu^+\nu and W−→Ό−ΜW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Replication and Characterization of Association between ABO SNPs and Red Blood Cell Traits by Meta-Analysis in Europeans.

    Get PDF
    Red blood cell (RBC) traits are routinely measured in clinical practice as important markers of health. Deviations from the physiological ranges are usually a sign of disease, although variation between healthy individuals also occurs, at least partly due to genetic factors. Recent large scale genetic studies identified loci associated with one or more of these traits; further characterization of known loci and identification of new loci is necessary to better understand their role in health and disease and to identify potential molecular mechanisms. We performed meta-analysis of Metabochip association results for six RBC traits-hemoglobin concentration (Hb), hematocrit (Hct), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), mean corpuscular volume (MCV) and red blood cell count (RCC)-in 11 093 Europeans from seven studies of the UCL-LSHTM-Edinburgh-Bristol (UCLEB) Consortium. We identified 394 non-overlapping SNPs in five loci at genome-wide significance: 6p22.1-6p21.33 (with HFE among others), 6q23.2 (with HBS1L among others), 6q23.3 (contains no genes), 9q34.3 (only ABO gene) and 22q13.1 (with TMPRSS6 among others), replicating previous findings of association with RBC traits at these loci and extending them by imputation to 1000 Genomes. We further characterized associations between ABO SNPs and three traits: hemoglobin, hematocrit and red blood cell count, replicating them in an independent cohort. Conditional analyses indicated the independent association of each of these traits with ABO SNPs and a role for blood group O in mediating the association. The 15 most significant RBC-associated ABO SNPs were also associated with five cardiometabolic traits, with discordance in the direction of effect between groups of traits, suggesting that ABO may act through more than one mechanism to influence cardiometabolic risk.British Heart Foundation (Grant ID: RG/10/12/28456, RG/08/013/25942, RG/13/16/30528, RG/98002, RG/07/008/23674); Medical Research Council (Grant ID: G0000934, G0500877, MC_UU_12019/1, K013351); Wellcome Trust (Grant ID: 068545/Z/02, 097451/Z/11/Z); European Commission Framework Programme 6 (Grant ID: 018996); French Ministry of Research; Department of Health Policy Research Programme (England); Chief Scientist Office of Scotland (Grant ID: CZB/4/672, CZQ/1/38); National Institute on Ageing (NIA) (Grant ID: AG1764406S1, 5RO1AG13196); Pfizer plc (Unrestricted Investigator Led Grant); Diabetes UK (Clinical Research Fellowship 10/0003985); Stroke Association; National Heart Lung and Blood Institute (5RO1HL036310); Agency for Health Care Policy Research (HS06516); John D. and Catherine T. MacArthur Foundation Research Networks on Successful Midlife Development and Socio-economic Status and Health; Swiss National Science Foundation (33CSCO-122661); GlaxoSmithKline. Faculty of Biology and Medicine of Lausanne,Switzerland.This is the final version of the article. It first appeared from Public Library of Science (PLOS) via http://dx.doi.org/10.1371/journal.pone.015691

    Common Variants at 10 Genomic Loci Influence Hemoglobin A(1C) Levels via Glycemic and Nonglycemic Pathways

    Get PDF
    OBJECTIVE Glycated hemoglobin (HbA1c), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA1c. We aimed to identify such genetic factors and investigate the extent to which they influence diabetes classification based on HbA1c levels. RESEARCH DESIGN AND METHODS We studied associations with HbA1c in up to 46,368 nondiabetic adults of European descent from 23 genome-wide association studies (GWAS) and 8 cohorts with de novo genotyped single nucleotide polymorphisms (SNPs). We combined studies using inverse-variance meta-analysis and tested mediation by glycemia using conditional analyses. We estimated the global effect of HbA1c loci using a multilocus risk score, and used net reclassification to estimate genetic effects on diabetes screening. RESULTS Ten loci reached genome-wide significant association with HbA1c, including six new loci near FN3K (lead SNP/P value, rs1046896/P = 1.6 × 10−26), HFE (rs1800562/P = 2.6 × 10−20), TMPRSS6 (rs855791/P = 2.7 × 10−14), ANK1 (rs4737009/P = 6.1 × 10−12), SPTA1 (rs2779116/P = 2.8 × 10−9) and ATP11A/TUBGCP3 (rs7998202/P = 5.2 × 10−9), and four known HbA1c loci: HK1 (rs16926246/P = 3.1 × 10−54), MTNR1B (rs1387153/P = 4.0 × 10−11), GCK (rs1799884/P = 1.5 × 10−20) and G6PC2/ABCB11 (rs552976/P = 8.2 × 10−18). We show that associations with HbA1c are partly a function of hyperglycemia associated with 3 of the 10 loci (GCK, G6PC2 and MTNR1B). The seven nonglycemic loci accounted for a 0.19 (% HbA1c) difference between the extreme 10% tails of the risk score, and would reclassify ∌2% of a general white population screened for diabetes with HbA1c. CONCLUSIONS GWAS identified 10 genetic loci reproducibly associated with HbA1c. Six are novel and seven map to loci where rarer variants cause hereditary anemias and iron storage disorders. Common variants at these loci likely influence HbA1c levels via erythrocyte biology, and confer a small but detectable reclassification of diabetes diagnosis by HbA1c
    • 

    corecore