37 research outputs found

    Charge Asymmetry and Photon Energy Spectrum in the Decay Bsl+lγB_s \to l^+ l^- \gamma

    Get PDF
    We consider the structure-dependent amplitude of the decay Bsl+lγB_s \to l^+ l^- \gamma (l=e,μ)(l=e,\mu) in a model based on the effective Hamiltonian for bsˉl+lb \bar{s} \to l^+ l^- containing the Wilson coefficients C7,C9C_7,C_9 and C10C_{10}. The form factors characterising the matrix elements <γsˉγμ(1γ5)bBˉs>< \gamma | \bar{s} \gamma_\mu (1 \mp \gamma_5) b | \bar{B}_s> and <γsˉσμν(1γ5)bBˉs>< \gamma | \bar{s} \sigma_{\mu\nu} (1 \mp \gamma_5) b | \bar{B}_s> are taken to have the universal form fVfAfTfBsMBsRs/(3Eγ)f_V \approx f_A \approx f_T \approx f_{B_s} M_{B_s} R_s / (3 E_\gamma) suggested by recent work in QCD, where RsR_s is a parameter related to the light cone wave function of the BsB_s meson. Simple expressions are obtained for the charge asymmetry A(xγ)A(x_\gamma) and the photon energy spectrum dΓ/dxγ(xγ=2Eγ/MBs)d \Gamma/ d x_\gamma (x_\gamma = 2 E_\gamma/M_{B_s}). The decay rates are calculated in terms of the decay rate of BsγγB_s \to \gamma \gamma. The branching ratios are estimated to be Br(Bse+eγ)=2.0×108Br(B_s \to e^+ e^- \gamma) = 2.0 \times 10^{-8} and Br(Bsμ+μγ)=1.2×108Br(B_s \to \mu^+ \mu^- \gamma) = 1.2 \times 10^{-8}, somewhat higher than earlier estimates.Comment: sign of fTf_T corrected; new table and figure

    Quantifying risks and interventions that have affected the burden of diarrhoea among children younger than 5 years : an analysis of the Global Burden of Disease Study 2017

    Get PDF
    Background Many countries have shown marked declines in diarrhoea! disease mortality among children younger than 5 years. With this analysis, we provide updated results on diarrhoeal disease mortality among children younger than 5 years from the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017) and use the study's comparative risk assessment to quantify trends and effects of risk factors, interventions, and broader sociodemographic development on mortality changes in 195 countries and territories from 1990 to 2017. Methods This analysis for GBD 2017 had three main components. Diarrhoea mortality was modelled using vital registration data, demographic surveillance data, and verbal autopsy data in a predictive, Bayesian, ensemble modelling tool; and the attribution of risk factors and interventions for diarrhoea were modelled in a counterfactual framework that combines modelled population-level prevalence of the exposure to each risk or intervention with the relative risk of diarrhoea given exposure to that factor. We assessed the relative and absolute change in diarrhoea mortality rate between 1990 and 2017, and used the change in risk factor exposure and sociodemographic status to explain differences in the trends of diarrhoea mortality among children younger than 5 years. Findings Diarrhoea was responsible for an estimated 533 768 deaths (95% uncertainty interval 477 162-593 145) among children younger than 5 years globally in 2017, a rate of 78.4 deaths (70.1-87.1) per 100 000 children. The diarrhoea mortality rate ranged between countries by over 685 deaths per 100 000 children. Diarrhoea mortality per 100 000 globally decreased by 69.6% (63.1-74.6) between 1990 and 2017. Among the risk factors considered in this study, those responsible for the largest declines in the diarrhoea mortality rate were reduction in exposure to unsafe sanitation (13.3% decrease, 11.2-15.5), childhood wasting (9.9% decrease, 9.6-10.2), and low use of oral rehydration solution (6.9% decrease, 4-8-8-4). Interpretation Diarrhoea mortality has declined substantially since 1990, although there are variations by country. Improvements in sociodemographic indicators might explain some of these trends, but changes in exposure to risk factors-particularly unsafe sanitation, childhood growth failure, and low use of oral rehydration solution-appear to be related to the relative and absolute rates of decline in diarrhoea mortality. Although the most effective interventions might vary by country or region, identifying and scaling up the interventions aimed at preventing and protecting against diarrhoea that have already reduced diarrhoea mortality could further avert many thousands of deaths due to this illness

    Quantifying risks and interventions that have affected the burden of diarrhoea among children younger than 5 years : an analysis of the Global Burden of Disease Study 2017

    Get PDF
    Background Many countries have shown marked declines in diarrhoea! disease mortality among children younger than 5 years. With this analysis, we provide updated results on diarrhoeal disease mortality among children younger than 5 years from the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017) and use the study's comparative risk assessment to quantify trends and effects of risk factors, interventions, and broader sociodemographic development on mortality changes in 195 countries and territories from 1990 to 2017. Methods This analysis for GBD 2017 had three main components. Diarrhoea mortality was modelled using vital registration data, demographic surveillance data, and verbal autopsy data in a predictive, Bayesian, ensemble modelling tool; and the attribution of risk factors and interventions for diarrhoea were modelled in a counterfactual framework that combines modelled population-level prevalence of the exposure to each risk or intervention with the relative risk of diarrhoea given exposure to that factor. We assessed the relative and absolute change in diarrhoea mortality rate between 1990 and 2017, and used the change in risk factor exposure and sociodemographic status to explain differences in the trends of diarrhoea mortality among children younger than 5 years. Findings Diarrhoea was responsible for an estimated 533 768 deaths (95% uncertainty interval 477 162-593 145) among children younger than 5 years globally in 2017, a rate of 78.4 deaths (70.1-87.1) per 100 000 children. The diarrhoea mortality rate ranged between countries by over 685 deaths per 100 000 children. Diarrhoea mortality per 100 000 globally decreased by 69.6% (63.1-74.6) between 1990 and 2017. Among the risk factors considered in this study, those responsible for the largest declines in the diarrhoea mortality rate were reduction in exposure to unsafe sanitation (13.3% decrease, 11.2-15.5), childhood wasting (9.9% decrease, 9.6-10.2), and low use of oral rehydration solution (6.9% decrease, 4-8-8-4). Interpretation Diarrhoea mortality has declined substantially since 1990, although there are variations by country. Improvements in sociodemographic indicators might explain some of these trends, but changes in exposure to risk factors-particularly unsafe sanitation, childhood growth failure, and low use of oral rehydration solution-appear to be related to the relative and absolute rates of decline in diarrhoea mortality. Although the most effective interventions might vary by country or region, identifying and scaling up the interventions aimed at preventing and protecting against diarrhoea that have already reduced diarrhoea mortality could further avert many thousands of deaths due to this illness. Copyright (C) 2019 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Mapping 123 million neonatal, infant and child deaths between 2000 and 2017

    Get PDF
    Since 2000, many countries have achieved considerable success in improving child survival, but localized progress remains unclear. To inform efforts towards United Nations Sustainable Development Goal 3.2—to end preventable child deaths by 2030—we need consistently estimated data at the subnational level regarding child mortality rates and trends. Here we quantified, for the period 2000–2017, the subnational variation in mortality rates and number of deaths of neonates, infants and children under 5 years of age within 99 low- and middle-income countries using a geostatistical survival model. We estimated that 32% of children under 5 in these countries lived in districts that had attained rates of 25 or fewer child deaths per 1,000 live births by 2017, and that 58% of child deaths between 2000 and 2017 in these countries could have been averted in the absence of geographical inequality. This study enables the identification of high-mortality clusters, patterns of progress and geographical inequalities to inform appropriate investments and implementations that will help to improve the health of all populations

    Mapping child growth failure across low- and middle-income countries

    Get PDF
    Child growth failure (CGF), manifested as stunting, wasting, and underweight, is associated with high 5 mortality and increased risks of cognitive, physical, and metabolic impairments. Children in low- and middle-income countries (LMICs) face the highest levels of CGF globally. Here we illustrate national and subnational variation of under-5 CGF indicators across LMICs, providing 2000–2017 annual estimates mapped at a high spatial resolution and aggregated to policy-relevant administrative units and national levels. Despite remarkable declines over the study period, many LMICs remain far from the World Health 10 Organization’s ambitious Global Nutrition Targets to reduce stunting by 40% and wasting to less than 5% by 2025. Large disparities in prevalence and rates of progress exist across regions, countries, and within countries; our maps identify areas where high prevalence persists even within nations otherwise succeeding in reducing overall CGF prevalence. By highlighting where subnational disparities exist and the highest-need populations reside, these geospatial estimates can support policy-makers in planning locally 15 tailored interventions and efficient directing of resources to accelerate progress in reducing CGF and its health implications

    Mapping development and health effects of cooking with solid fuels in low-income and middle-income countries, 2000-18 : a geospatial modelling study

    Get PDF
    Background More than 3 billion people do not have access to clean energy and primarily use solid fuels to cook. Use of solid fuels generates household air pollution, which was associated with more than 2 million deaths in 2019. Although local patterns in cooking vary systematically, subnational trends in use of solid fuels have yet to be comprehensively analysed. We estimated the prevalence of solid-fuel use with high spatial resolution to explore subnational inequalities, assess local progress, and assess the effects on health in low-income and middle-income countries (LMICs) without universal access to clean fuels.Methods We did a geospatial modelling study to map the prevalence of solid-fuel use for cooking at a 5 km x 5 km resolution in 98 LMICs based on 2.1 million household observations of the primary cooking fuel used from 663 population-based household surveys over the years 2000 to 2018. We use observed temporal patterns to forecast household air pollution in 2030 and to assess the probability of attaining the Sustainable Development Goal (SDG) target indicator for clean cooking. We aligned our estimates of household air pollution to geospatial estimates of ambient air pollution to establish the risk transition occurring in LMICs. Finally, we quantified the effect of residual primary solid-fuel use for cooking on child health by doing a counterfactual risk assessment to estimate the proportion of deaths from lower respiratory tract infections in children younger than 5 years that could be associated with household air pollution.Findings Although primary reliance on solid-fuel use for cooking has declined globally, it remains widespread. 593 million people live in districts where the prevalence of solid-fuel use for cooking exceeds 95%. 66% of people in LMICs live in districts that are not on track to meet the SDG target for universal access to clean energy by 2030. Household air pollution continues to be a major contributor to particulate exposure in LMICs, and rising ambient air pollution is undermining potential gains from reductions in the prevalence of solid-fuel use for cooking in many countries. We estimated that, in 2018, 205000 (95% uncertainty interval 147000-257000) children younger than 5 years died from lower respiratory tract infections that could be attributed to household air pollution.Interpretation Efforts to accelerate the adoption of clean cooking fuels need to be substantially increased and recalibrated to account for subnational inequalities, because there are substantial opportunities to improve air quality and avert child mortality associated with household air pollution. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Mapping geographical inequalities in access to drinking water and sanitation facilities in low-income and middle-income countries, 2000-17

    Get PDF
    Background: Universal access to safe drinking water and sanitation facilities is an essential human right, recognised in the Sustainable Development Goals as crucial for preventing disease and improving human wellbeing. Comprehensive, high-resolution estimates are important to inform progress towards achieving this goal. We aimed to produce high-resolution geospatial estimates of access to drinking water and sanitation facilities. Methods: We used a Bayesian geostatistical model and data from 600 sources across more than 88 low-income and middle-income countries (LMICs) to estimate access to drinking water and sanitation facilities on continuous continent-wide surfaces from 2000 to 2017, and aggregated results to policy-relevant administrative units. We estimated mutually exclusive and collectively exhaustive subcategories of facilities for drinking water (piped water on or off premises, other improved facilities, unimproved, and surface water) and sanitation facilities (septic or sewer sanitation, other improved, unimproved, and open defecation) with use of ordinal regression. We also estimated the number of diarrhoeal deaths in children younger than 5 years attributed to unsafe facilities and estimated deaths that were averted by increased access to safe facilities in 2017, and analysed geographical inequality in access within LMICs. Findings: Across LMICs, access to both piped water and improved water overall increased between 2000 and 2017, with progress varying spatially. For piped water, the safest water facility type, access increased from 40·0% (95% uncertainty interval [UI] 39·4–40·7) to 50·3% (50·0–50·5), but was lowest in sub-Saharan Africa, where access to piped water was mostly concentrated in urban centres. Access to both sewer or septic sanitation and improved sanitation overall also increased across all LMICs during the study period. For sewer or septic sanitation, access was 46·3% (95% UI 46·1–46·5) in 2017, compared with 28·7% (28·5–29·0) in 2000. Although some units improved access to the safest drinking water or sanitation facilities since 2000, a large absolute number of people continued to not have access in several units with high access to such facilities (>80%) in 2017. More than 253 000 people did not have access to sewer or septic sanitation facilities in the city of Harare, Zimbabwe, despite 88·6% (95% UI 87·2–89·7) access overall. Many units were able to transition from the least safe facilities in 2000 to safe facilities by 2017; for units in which populations primarily practised open defecation in 2000, 686 (95% UI 664–711) of the 1830 (1797–1863) units transitioned to the use of improved sanitation. Geographical disparities in access to improved water across units decreased in 76·1% (95% UI 71·6–80·7) of countries from 2000 to 2017, and in 53·9% (50·6–59·6) of countries for access to improved sanitation, but remained evident subnationally in most countries in 2017. Interpretation: Our estimates, combined with geospatial trends in diarrhoeal burden, identify where efforts to increase access to safe drinking water and sanitation facilities are most needed. By highlighting areas with successful approaches or in need of targeted interventions, our estimates can enable precision public health to effectively progress towards universal access to safe water and sanitation

    Erratum: Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Interpretation: By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning

    Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 comparative risk assessment (CRA) is a comprehensive approach to risk factor quantification that offers a useful tool for synthesising evidence on risks and risk–outcome associations. With each annual GBD study, we update the GBD CRA to incorporate improved methods, new risks and risk–outcome pairs, and new data on risk exposure levels and risk–outcome associations. Methods We used the CRA framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017. This study included 476 risk–outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk and exposure estimates from 46 749 randomised controlled trials, cohort studies, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. We explored the relationship between development and risk exposure by modelling the relationship between the Socio-demographic Index (SDI) and risk-weighted exposure prevalence and estimated expected levels of exposure and risk-attributable burden by SDI. Finally, we explored temporal changes in risk-attributable DALYs by decomposing those changes into six main component drivers of change as follows: (1) population growth; (2) changes in population age structures; (3) changes in exposure to environmental and occupational risks; (4) changes in exposure to behavioural risks; (5) changes in exposure to metabolic risks; and (6) changes due to all other factors, approximated as the risk-deleted death and DALY rates, where the risk-deleted rate is the rate that would be observed had we reduced the exposure levels to the TMREL for all risk factors included in GBD 2017. Findings In 2017, 34·1 million (95% uncertainty interval [UI] 33·3–35·0) deaths and 1·21 billion (1·14–1·28) DALYs were attributable to GBD risk factors. Globally, 61·0% (59·6–62·4) of deaths and 48·3% (46·3–50·2) of DALYs were attributed to the GBD 2017 risk factors. When ranked by risk-attributable DALYs, high systolic blood pressure (SBP) was the leading risk factor, accounting for 10·4 million (9·39–11·5) deaths and 218 million (198–237) DALYs, followed by smoking (7·10 million [6·83–7·37] deaths and 182 million [173–193] DALYs), high fasting plasma glucose (6·53 million [5·23–8·23] deaths and 171 million [144–201] DALYs), high body-mass index (BMI; 4·72 million [2·99–6·70] deaths and 148 million [98·6–202] DALYs), and short gestation for birthweight (1·43 million [1·36–1·51] deaths and 139 million [131–147] DALYs). In total, risk-attributable DALYs declined by 4·9% (3·3–6·5) between 2007 and 2017. In the absence of demographic changes (ie, population growth and ageing), changes in risk exposure and risk-deleted DALYs would have led to a 23·5% decline in DALYs during that period. Conversely, in the absence of changes in risk exposure and risk-deleted DALYs, demographic changes would have led to an 18·6% increase in DALYs during that period. The ratios of observed risk exposure levels to exposure levels expected based on SDI (O/E ratios) increased globally for unsafe drinking water and household air pollution between 1990 and 2017. This result suggests that development is occurring more rapidly than are changes in the underlying risk structure in a population. Conversely, nearly universal declines in O/E ratios for smoking and alcohol use indicate that, for a given SDI, exposure to these risks is declining. In 2017, the leading Level 4 risk factor for age-standardised DALY rates was high SBP in four super-regions: central Europe, eastern Europe, and central Asia; north Africa and Middle East; south Asia; and southeast Asia, east Asia, and Oceania. The leading risk factor in the high-income super-region was smoking, in Latin America and Caribbean was high BMI, and in sub-Saharan Africa was unsafe sex. O/E ratios for unsafe sex in sub-Saharan Africa were notably high, and those for alcohol use in north Africa and the Middle East were notably low. Interpretation By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning

    Mapping inequalities in exclusive breastfeeding in low- and middle-income countries, 2000–2018

    Get PDF
    Exclusive breastfeeding (EBF)—giving infants only breast-milk for the first 6 months of life—is a component of optimal breastfeeding practices effective in preventing child morbidity and mortality. EBF practices are known to vary by population and comparable subnational estimates of prevalence and progress across low- and middle-income countries (LMICs) are required for planning policy and interventions. Here we present a geospatial analysis of EBF prevalence estimates from 2000 to 2018 across 94 LMICs mapped to policy-relevant administrative units (for example, districts), quantify subnational inequalities and their changes over time, and estimate probabilities of meeting the World Health Organization’s Global Nutrition Target (WHO GNT) of ≥70% EBF prevalence by 2030. While six LMICs are projected to meet the WHO GNT of ≥70% EBF prevalence at a national scale, only three are predicted to meet the target in all their district-level units by 2030
    corecore