Charge asymmetry and photon energy spectrum in the decay $B_{s} \rightarrow l^{+} l^{-} \gamma$

Yusuf Dinçer, Lalit M. Sehgal
Institute of Theoretical Physics, RWTH Aachen, D-52056 Aachen, Germany

Received 17 August 2001; received in revised form 25 September 2001; accepted 5 October 2001
Editor: P.V. Landshoff

Abstract

We consider the structure-dependent amplitude of the decay $B_{s} \rightarrow l^{+} l^{-} \gamma(l=e, \mu)$ in a model based on the effective Hamiltonian for $b \bar{s} \rightarrow l^{+} l^{-}$containing the Wilson coefficients C_{7}, C_{9} and C_{10}. The form factors characterising the matrix elements $\langle\gamma| \bar{s} \gamma_{\mu}\left(1 \mp \gamma_{5}\right) b\left|\bar{B}_{S}\right\rangle$ and $\langle\gamma| \bar{s} \sigma_{\mu \nu}\left(1 \mp \gamma_{5}\right) b\left|\bar{B}_{s}\right\rangle$ are taken to have the universal form $f_{V} \approx f_{A} \approx f_{T} \approx$ $f_{B_{s}} M_{B_{s}} R_{S} /\left(3 E_{\gamma}\right)$ suggested by recent work in QCD, where R_{S} is a parameter related to the light cone wave function of the B_{S} meson. Simple expressions are obtained for the charge asymmetry $A\left(x_{\gamma}\right)$ and the photon energy spectrum $d \Gamma / d x_{\gamma}\left(x_{\gamma}=\right.$ $2 E_{\gamma} / M_{B_{s}}$). The decay rates are calculated in terms of the decay rate of $B_{s} \rightarrow \gamma \gamma$. The branching ratios are estimated to be $\operatorname{Br}\left(B_{s} \rightarrow e^{+} e^{-} \gamma\right)=2.0 \times 10^{-8}$ and $\operatorname{Br}\left(B_{s} \rightarrow \mu^{+} \mu^{-} \gamma\right)=1.2 \times 10^{-8}$, somewhat higher than earlier estimates.

 © 2001 Published by Elsevier Science B.V. Open access under CC BY license.
1. Introduction

The rare decay $B_{s} \rightarrow l^{+} l^{-} \gamma$ is of interest as a probe of the effective Hamiltonian for the transition $b \bar{s} \rightarrow l^{+} l^{-}$, and as a testing ground for form factors describing the matrix elements $\langle\gamma| \bar{s} \gamma_{\mu}\left(1 \mp \gamma_{5}\right) b\left|\bar{B}_{s}\right\rangle$ and $\langle\gamma| \bar{s} i \sigma_{\mu \nu}(1 \mp$ $\left.\gamma_{5}\right) b\left|\bar{B}_{s}\right\rangle[1,2]$. The branching ratio for $B_{s} \rightarrow l^{+} l^{-} \gamma$ can be sizeable in comparison to the non-radiative process $B_{s} \rightarrow l^{+} l^{-}$, since the chiral suppression of the latter is absent in the radiative transition. We will be concerned mainly with the structure-dependent part of the matrix element, since the correction due to bremsstrahlung from the external leptons is small and can be removed by eliminating the end-point region $s_{l^{+} l^{-}} \approx M_{B_{s}}^{2}$. (For related studies of radiative B decays, we refer to the papers in Ref. [3].)

Our objective is to calculate the decay spectrum of $B_{s} \rightarrow l^{+} l^{-} \gamma$ using form factors suggested by recent work in QCD [4]. These form factors have the virtue of possessing a universal behaviour $1 / E_{\gamma}$ for large E_{γ}, as well as a universal normalization. These features can be tested in measurements of $B^{+} \rightarrow \mu^{+} \nu \gamma$ and $B_{s} \rightarrow \gamma \gamma$. We derive simple formulae for the photon energy spectrum $d \Gamma / d x_{\gamma}, x_{\gamma}=2 E_{\gamma} / m_{B_{s}}$, and the charge asymmetry $A\left(x_{\gamma}\right)$, defined as the difference in the probability of events with $E_{+}>E_{-}$and $E_{+}<E_{-}, E_{ \pm}$being the $l^{ \pm}$energies. This asymmetry is large over most of the x_{γ} domain. Predictions are obtained for the branching ratios $\operatorname{Br}\left(B_{s} \rightarrow e^{+} e^{-} \gamma\right)$ and $\operatorname{Br}\left(B_{s} \rightarrow \mu^{+} \mu^{-} \gamma\right)$ which are somewhat higher than those estimated in previous literature [1,2].

[^0]
2. Matrix element and differential decay rate

The effective Hamiltonian for the interaction $b \bar{s} \rightarrow l^{+} l^{-}$has the standard form [5]

$$
\begin{equation*}
\mathcal{H}_{\mathrm{eff}}=\frac{\alpha G_{F}}{\sqrt{2} \pi} V_{t b} V_{t s}^{\star}\left\{C_{9}^{\mathrm{eff}}\left(\bar{s} \gamma_{\mu} P_{L} b\right) \bar{l} \gamma_{\mu} l+C_{10}\left(\bar{s} \gamma_{\mu} P_{L} b\right) \bar{l}_{\mu} \gamma_{5} l-2 \frac{C_{7}}{q^{2}} \bar{s} \sigma_{\mu \nu} q^{\nu}\left(m_{b} P_{R}+m_{s} P_{L}\right) b \bar{l} \bar{\gamma}_{\mu} l\right\}, \tag{1}
\end{equation*}
$$

where $P_{L, R}=\left(1 \mp \gamma_{5}\right) / 2$ and q is the sum of the l^{+}and l^{-}momenta. For the purpose of this Letter, we will neglect the small q^{2}-dependent terms in $C_{9}^{\text {eff }}$, arising from one-loop contributions of four-quark operators, as well as long-distance effects associated with $c \bar{c}$ resonances. The Wilson coefficients in Eq. (1) will be taken to have the constant values

$$
\begin{equation*}
C_{7}=-0.315, \quad C_{9}=4.334, \quad C_{10}=-4.624 . \tag{2}
\end{equation*}
$$

To obtain the amplitude for $B_{s} \rightarrow l^{+} l^{-} \gamma$, one requires the matrix elements $\langle\gamma| \bar{s} \gamma_{\mu}\left(1 \mp \gamma_{5}\right) b\left|\bar{B}_{s}\right\rangle$ and $\langle\gamma| \bar{s} i \sigma_{\mu \nu}\left(1 \mp \gamma_{5}\right) b\left|\bar{B}_{s}\right\rangle$. We parametrise these in the same way as in Ref. [1,2]

$$
\begin{align*}
& \langle\gamma(k)| \bar{s} \gamma_{\mu} b\left|\bar{B}_{s}(k+q)\right\rangle=e \epsilon_{\mu \nu \rho \sigma} \epsilon^{\star v} q^{\rho} k^{\sigma} f_{V}\left(q^{2}\right) / M_{B_{s}}, \\
& \langle\gamma(k)| \bar{s} \gamma_{\mu} \gamma_{5} b\left|\bar{B}_{s}(k+q)\right\rangle=-i e\left[\epsilon_{\mu}^{\star} k \cdot q-\epsilon^{\star} \cdot q k_{\mu}\right] f_{A}\left(q^{2}\right) / M_{B_{s}}, \\
& \langle\gamma(k)| \bar{s} i \sigma_{\mu \nu} q^{\nu} b\left|\bar{B}_{s}(k+q)\right\rangle=-e \epsilon_{\mu \nu \rho \sigma} \epsilon^{\star v} q^{\rho} k^{\sigma} f_{T}\left(q^{2}\right), \\
& \langle\gamma(k)| \bar{s} i \sigma_{\mu \nu} \gamma_{5} q^{\nu} b\left|\bar{B}_{s}(k+q)\right\rangle=-i e\left[\epsilon_{\mu}^{\star} k \cdot q-\epsilon^{\star} \cdot q k_{\mu}\right] f_{T}^{\prime}\left(q^{2}\right) . \tag{3}
\end{align*}
$$

The form factors f_{V}, f_{A}, f_{T} and f_{T}^{\prime} are dimensionless, and related to those of Aliev et al. [1] by $f_{V}=$ $g / M_{B_{s}}, f_{A}=f / M_{B_{s}}, f_{T}=-g_{1} / M_{B_{s}}^{2}, f_{T}^{\prime}=-f_{1} / M_{B_{s}}^{2}$. The matrix element for $\bar{B}_{s} \rightarrow l^{+} l^{-} \gamma$ can then be written as (neglecting terms of order m_{s} / m_{b})

$$
\begin{align*}
\mathcal{M}\left(\bar{B}_{s} \rightarrow l^{+} l^{-} \gamma\right)=\frac{\alpha G_{F}}{2 \sqrt{2} \pi} e V_{t b} V_{t s}^{\star} \frac{1}{M_{B_{s}}} & {\left[\epsilon_{\mu \nu \rho \sigma} \epsilon^{\star v} q^{\rho} k^{\sigma}\left(A_{1} \bar{l} \gamma^{\mu} l+A_{2} \bar{l} \gamma^{\mu} \gamma_{5} l\right)\right.} \\
& \left.+i\left(\epsilon_{\mu}^{\star}(k \cdot q)-\left(\epsilon^{\star} \cdot q\right) k_{\mu}\right)\left(B_{1} \bar{l} \gamma^{\mu} l+B_{2} \bar{l} \gamma^{\mu} \gamma_{5} l\right)\right], \tag{4}
\end{align*}
$$

where

$$
\begin{array}{ll}
A_{1}=C_{9} f_{V}+2 C_{7} \frac{M_{B_{s}}^{2}}{q^{2}} f_{T}, & A_{2}=C_{10} f_{V}, \\
B_{1}=C_{9} f_{A}+2 C_{7} \frac{M_{B_{s}}^{2}}{q^{2}} f_{T}^{\prime}, & B_{2}=C_{10} f_{A} . \tag{5}
\end{array}
$$

(In the coefficient of C_{7}, we have approximated $m_{b} M_{B_{s}}$ by $M_{B_{s}}^{2}$.) The Dalitz plot density in the energy variables $E_{ \pm}$is

$$
\begin{equation*}
\frac{d \Gamma}{d E_{+} d E_{-}}=\frac{1}{256 \pi^{3} M_{B_{s}}} \sum_{\text {spin }}|\mathcal{M}|^{2}, \tag{6}
\end{equation*}
$$

where [1,2,6]

$$
\begin{aligned}
\sum_{\text {spin }}|\mathcal{M}|^{2}= & \left|\frac{\alpha G_{F}}{\sqrt{2} \pi} V_{t b} V_{t s}^{\star} e\right|^{2} \frac{1}{M_{B_{s}}^{2}} \\
& \times\left\{\left(\left|A_{1}\right|^{2}+\left|B_{1}\right|^{2}\right)\left[q^{2}\left\{\left(p_{+} \cdot k\right)^{2}+\left(p_{-} \cdot k\right)^{2}\right\}+2 m_{l}^{2}(q \cdot k)^{2}\right]\right.
\end{aligned}
$$

$$
\begin{align*}
& +\left(\left|A_{2}\right|^{2}+\left|B_{2}\right|^{2}\right)\left[q^{2}\left\{\left(p_{+} \cdot k\right)^{2}+\left(p_{-} \cdot k\right)^{2}\right\}-2 m_{l}^{2}(q \cdot k)^{2}\right] \\
& \left.+2 \operatorname{Re}\left(B_{1}^{\star} A_{2}+A_{1}^{\star} B_{2}\right) q^{2}\left[\left(p_{+} \cdot k\right)^{2}-\left(p_{-} \cdot k\right)^{2}\right]\right\} \tag{7}
\end{align*}
$$

It is convenient to introduce dimensionless variables

$$
\begin{equation*}
x_{\gamma}=2 E_{\gamma} / M_{B_{s}}, \quad x_{ \pm}=2 E_{ \pm} / M_{B_{s}}, \quad \Delta=x_{+}-x_{-}, \quad r=m_{l}^{2} / M_{B_{s}}^{2} \tag{8}
\end{equation*}
$$

in terms of which $q^{2}=M_{B_{s}}^{2}\left(1-x_{\gamma}\right)$. Taking x_{γ} and Δ as the two coordinates of the Dalitz plot, phase space is defined by

$$
\begin{align*}
& |\Delta| \leqslant v x_{\gamma}, \quad v=\sqrt{1-4 m_{l}^{2} / q^{2}}=\sqrt{1-4 r /\left(1-x_{\gamma}\right)} \\
& \quad 0 \leqslant x_{\gamma} \leqslant 1-4 r \tag{9}
\end{align*}
$$

In terms of x_{γ} and Δ, the differential decay width takes the form

$$
\begin{align*}
& \frac{d \Gamma}{d x_{\gamma} d \Delta}=\mathcal{N}\left[\left(\left|A_{1}\right|^{2}+\left|B_{1}\right|^{2}\right)\left\{\frac{\left(1-x_{\gamma}\right)\left(x_{\gamma}^{2}+\Delta^{2}\right)}{8}+\frac{1}{2} r x_{\gamma}^{2}\right\}\right. \\
&\left.+\left(\left|A_{2}\right|^{2}+\left|B_{2}\right|^{2}\right)\left\{\frac{\left(1-x_{\gamma}\right)\left(x_{\gamma}^{2}+\Delta^{2}\right)}{8}-\frac{1}{2} r x_{\gamma}^{2}\right\}+2 \operatorname{Re}\left(B_{1}^{\star} A_{2}+A_{1}^{\star} B_{2}\right)\left(1-x_{\gamma}\right) \frac{1}{4} x_{\gamma} \Delta\right] \tag{10}
\end{align*}
$$

where $\mathcal{N}=\left[\alpha^{2} G_{F}^{2} /\left(256 \pi^{4}\right)\right]\left|V_{t b} V_{t s}^{\star}\right|^{2} M_{B_{s}}^{5}$. The last term is linear in Δ and produces an asymmetry between the l^{+}and l^{-}energy spectra.

We will derive from Eq. (10) two distributions of interest:
(i) The charge asymmetry $A\left(x_{\gamma}\right)$ defined as

$$
\begin{align*}
A\left(x_{\gamma}\right) & =\frac{\left(\int_{0}^{v x_{\gamma}} \frac{d \Gamma}{d x_{\gamma} d \Delta}-\int_{-v x_{\gamma}}^{0} \frac{d \Gamma}{d x_{\gamma} d \Delta}\right) d \Delta}{\int_{-v x_{\gamma}}^{+v x_{\gamma}} \frac{d \Gamma}{d x_{\gamma} d \Delta} d \Delta} \\
& =\frac{3}{4} v\left(1-x_{\gamma}\right) \frac{2 \operatorname{Re}\left(B_{1}^{\star} A_{2}+A_{1}^{\star} B_{2}\right)}{\left\{\left(\left|A_{1}\right|^{2}+\left|B_{1}\right|^{2}\right)\left(1-x_{\gamma}+2 r\right)+\left(\left|A_{2}\right|^{2}+\left|B_{2}\right|^{2}\right)\left(1-x_{\gamma}-4 r\right)\right\}} . \tag{11}
\end{align*}
$$

(ii) The photon energy spectrum

$$
\begin{equation*}
\frac{d \Gamma}{d x_{\gamma}}=\frac{\alpha^{3} G_{F}^{2}}{768 \pi^{4}}\left|V_{t b} V_{t s}^{\star}\right|^{2} M_{B_{s}}^{5} v x_{\gamma}^{3}\left[\left(\left|A_{1}\right|^{2}+\left|B_{1}\right|^{2}\right)(1-x+2 r)+\left(\left|A_{2}\right|^{2}+\left|B_{2}\right|^{2}\right)\left(1-x_{\gamma}-4 r\right)\right] \tag{12}
\end{equation*}
$$

To proceed further, we must introduce a model for the form factors which appear in the functions $A_{1,2}$ and $B_{1,2}$ defined in Eq. (5).

3. Model for form factors

First of all, we note that the form factors f_{T} and f_{T}^{\prime} defined in Eq. (3) are necessarily equal, by virtue of the identity

$$
\begin{equation*}
\sigma_{\mu \nu}=\frac{i}{2} \epsilon_{\mu \nu \alpha \beta} \sigma^{\alpha \beta} \gamma_{5} \tag{13}
\end{equation*}
$$

This was pointed out by Korchemsky et al. [4]. We, therefore, have to deal with three independent form factors f_{V}, f_{A} and f_{T}. These have been computed in Ref. [4] using perturbative QCD methods combined with heavy
quark effective theory. For the vector and axial vector form factors of the radiative decay $B^{+} \rightarrow l^{+} v \gamma$, and their tensor counterpart, defined as in Eq. (3), these authors obtain the remarkable result

$$
\begin{equation*}
f_{V}\left(E_{\gamma}\right)=f_{A}\left(E_{\gamma}\right)=f_{T}\left(E_{\gamma}\right)=\frac{f_{B} m_{B}}{2 E_{\gamma}}\left(Q_{u} R-\frac{Q_{b}}{m_{b}}\right)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{E_{\gamma}^{2}}\right), \tag{14}
\end{equation*}
$$

where R is a parameter related to the light-cone wave-function of the B meson, with an order of magnitude $R^{-1} \sim \bar{\Lambda}=M_{B}-m_{b}$, where the binding energy $\bar{\Lambda}$ is estimated to be between 0.3 and 0.4 GeV . Applying the same reasoning to the form factors for $\bar{B}_{s} \rightarrow l^{+} l^{-} \gamma$, we conclude that

$$
\begin{equation*}
f_{V}\left(E_{\gamma}\right)=f_{A}\left(E_{\gamma}\right)=f_{T}\left(E_{\gamma}\right)=\frac{f_{B_{S}} M_{B_{s}}}{2 E_{\gamma}}\left(-Q_{s} R_{s}+\frac{Q_{b}}{m_{b}}\right)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{E_{\gamma}^{2}}\right) . \tag{15}
\end{equation*}
$$

In what follows, we will neglect the term Q_{b} / m_{b}, and approximate the form factors by

$$
\begin{equation*}
f_{V, A, T}\left(E_{\gamma}\right) \approx \frac{f_{B_{s}} M_{B_{s}}}{2 E_{\gamma}} \frac{1}{3 \bar{\Lambda}_{s}}=\frac{1}{3} \frac{f_{B}}{\bar{\Lambda}_{s}} \frac{1}{x_{\gamma}}, \tag{16}
\end{equation*}
$$

where $\bar{\Lambda}_{s}=M_{B_{s}}-m_{b}$ will be taken to have the nominal value 0.5 GeV . Several of our results will depend only on the universal form $f_{V, A, T}\left(E_{\gamma}\right) \sim 1 / E_{\gamma}$, independent of the normalization. As pointed out in [4], a check of the behaviour $f_{V, A} \sim 1 / E_{\gamma}$ in the case of $B^{+} \rightarrow \mu^{+} \nu \gamma$ is afforded by the photon energy spectrum, which is predicted to be

$$
\begin{equation*}
\frac{d \Gamma}{d x_{\gamma}} \sim\left[f_{V}^{2}\left(E_{\gamma}\right)+f_{A}^{2}\left(E_{\gamma}\right)\right] x_{\gamma}^{3}\left(1-x_{\gamma}\right) \sim x_{\gamma}\left(1-x_{\gamma}\right) . \tag{17}
\end{equation*}
$$

In the case of the reaction $B_{s} \rightarrow l^{+} l^{-} \gamma$, the normalization of the tensor form factor $f_{T}\left(E_{\gamma}\right)$ at $E_{\gamma}=M_{B} / 2$ (i.e., $x_{\gamma}=1$) can be checked by appeal to the decay rate of $B_{s} \rightarrow \gamma \gamma$. To see this connection, we note that the matrix element of $B_{s} \rightarrow \gamma(k, \epsilon)+\gamma\left(k^{\prime}, \epsilon^{\prime}\right)$ can be obtained from that of $B_{s} \rightarrow l^{+} l^{-} \gamma$ by putting $C_{9}=C_{10}=0$, and replacing the factor $\left(e f_{T} C_{7} / q^{2}\right)\left(\bar{l} \gamma_{\mu} l\right)$ by $f_{T}\left(x_{\gamma}=1\right) \epsilon_{\mu}^{\star \prime}$. This yields the matrix element

$$
\mathcal{M}\left(\bar{B}_{s} \rightarrow \gamma(\epsilon, k) \gamma\left(\epsilon^{\prime}, k^{\prime}\right)\right)=-i \frac{G_{F} e^{2}}{\sqrt{2} \pi^{2}}\left(V_{t b} V_{t s}^{\star}\right)\left[A^{+} F_{\mu \nu} F^{\mu \nu^{\prime}}+i A^{-} F_{\mu \nu} \widetilde{F}^{\mu \nu^{\prime}}\right]
$$

with

$$
\begin{equation*}
A^{+}=-A^{-}=\frac{1}{4} M_{B_{s}} f_{T}\left(x_{\gamma}=1\right) C_{7} . \tag{18}
\end{equation*}
$$

The result for $A^{ \pm}$coincides with that obtained in Refs. [7-9] when $f_{T}\left(x_{\gamma}=1\right)=-\frac{Q_{d} f_{B}}{\bar{\Lambda}_{s}}=\frac{1}{3} \frac{f_{B}}{\bar{\Lambda}_{s}}$. (In Refs. [8,9], the role of the parameter Λ_{s} is played by the constituent quark mass m_{s}.) Thus the decay width of $B_{s} \rightarrow \gamma \gamma$,

$$
\begin{equation*}
\Gamma\left(B_{s} \rightarrow \gamma \gamma\right)=\frac{M_{B_{s}}^{3}}{16 \pi}\left|\frac{G_{F} e^{2}}{\sqrt{2} \pi^{2}} V_{t b} V_{t s}^{\star}\right|^{2}\left(\left|A_{+}\right|^{2}+\left|A_{-}\right|^{2}\right) \tag{19}
\end{equation*}
$$

serves as a test of the normalization factor $f_{T}\left(x_{\gamma}=1\right)$.
We remark, parenthetically, that the calculation of $B_{s} \rightarrow \gamma \gamma$, based on an effective interaction for $b \rightarrow s \gamma \gamma$, produces the amplitudes A^{+}and A^{-}given in Eq. (18) in the limit of retaining only the 'reducible' diagrams related to the transition $b \rightarrow s \gamma$. Inclusion of 'irreducible' contributions like $b \bar{s} \rightarrow c \bar{c} \rightarrow \gamma \gamma$ introduces a correction term in A_{-}causing the ratio $\left|A_{+} / A_{-}\right|$to deviate from unity. Estimates in Ref. $[7,8]$ yield values for this ratio between 0.75 and 0.9. The branching ratio $\operatorname{Br}\left(B_{s} \rightarrow \gamma \gamma\right)$ is estimated at 5×10^{-7}, with an uncertainty of about 50%.

Having specified our model for the form factors $f_{V}\left(x_{\gamma}\right), f_{A}\left(x_{\gamma}\right)$ and $f_{T}\left(x_{\gamma}\right)$, we proceed to present results for the spectrum and branching ratio of $B_{s} \rightarrow l^{+} l^{-} \gamma[10]$. We use $M_{B_{s}}=5.3 \mathrm{GeV}, f_{B_{s}}=200 \mathrm{MeV}$ and, where necessary, $\bar{\Lambda}_{s}=0.5 \mathrm{GeV}$ in the normalization of the form factors in Eq. (16).

4. Results

4.1. Charge asymmetry

With the assumption of universal form factors $f_{V}=f_{A}=f_{T} \sim \frac{1}{x_{\gamma}}$, the asymmetry $A\left(x_{\gamma}\right)$ in Eq. (11) assumes the simple form

$$
\begin{equation*}
A\left(x_{\gamma}\right)=\frac{3}{4} v \frac{2 C_{10}\left(C_{9}+2 C_{7} \frac{1}{1-x_{\gamma}}\right)\left(1-x_{\gamma}\right)}{\left(C_{9}+2 C_{7} \frac{1}{1-x_{\gamma}}\right)^{2}\left(1-x_{\gamma}+2 r\right)+C_{10}^{2}\left(1-x_{\gamma}-4 r\right)} \tag{20}
\end{equation*}
$$

This is plotted in Fig. 1, and is clearly large and negative over most of the x_{γ} domain, changing sign at $x_{\gamma}=1+\frac{2 C_{7}}{C_{9}}$. (A negative asymmetry corresponds to l^{-}being more energetic, on average, than l^{+}in the decay $\bar{B}_{s}(=b \bar{s}) \rightarrow l^{+} l^{-} \gamma$.) The average charge asymmetry is

$$
\begin{equation*}
\langle A\rangle=\frac{3}{4} \frac{\int_{0}^{1-4 r} d x_{\gamma} v^{2} x_{\gamma}\left(1-x_{\gamma}\right) 2 C_{10}\left(C_{9}+2 C_{7} \frac{1}{1-x_{\gamma}}\right)}{\int_{0}^{1-4 r} d x_{\gamma} v x_{\gamma}\left[\left(1-x_{\gamma}+2 r\right)\left(C_{9}+2 C_{7} \frac{1}{1-x_{\gamma}}\right)^{2}+\left(1-x_{\gamma}-4 r\right) C_{10}^{2}\right]} \tag{21}
\end{equation*}
$$

and has the numerical value $\langle A\rangle_{e}=-0.28,\langle A\rangle_{\mu}=-0.47$ for the modes $l=e, \mu$, the difference arising essentially from the end-point region $x_{\gamma} \approx 1-4 r$.

4.2. Photon energy spectrum

With the form factors of Eq. (16), the photon energy spectrum simplifies to

$$
\begin{equation*}
\frac{d \Gamma}{d x_{\gamma}}=\frac{1}{3} \mathcal{N} v x_{\gamma}\left\{\left(1-x_{\gamma}+2 r\right)\left(C_{9}+2 C_{7} \frac{1}{1-x_{\gamma}}\right)^{2}+\left(1-x_{\gamma}-4 r\right) C_{10}^{2}\right\} \tag{22}
\end{equation*}
$$

where the constant factor \mathcal{N} is defined after Eq. (10). It is expedient to write this distribution in terms of the decay rate of $\bar{B}_{S} \rightarrow \gamma \gamma$. We then obtain the prediction

$$
\begin{align*}
& \frac{d \Gamma\left(\bar{B}_{s} \rightarrow l^{+} l^{-} \gamma\right) / d x_{\gamma}}{\Gamma\left(\bar{B}_{s} \rightarrow \gamma \gamma\right)} \\
& \quad=\left\{\frac{2 \alpha}{3 \pi} \frac{x_{\gamma}^{3}}{\left(1-x_{\gamma}\right)^{2}} v\left(1-x_{\gamma}+2 r\right)\right\}\left(\frac{1}{x_{\gamma}}\right)^{2}\left[\left\{\eta_{9}\left(1-x_{\gamma}\right)+1\right\}^{2}+\left\{\eta_{10}\left(1-x_{\gamma}\right)\right\}^{2} \frac{1-x_{\gamma}-4 r}{1-x_{\gamma}+2 r}\right] \tag{23}
\end{align*}
$$

Fig. 1. Asymmetry versus x_{γ}.

The first factor (in curly brackets $\left\}\right.$) is the QED result expected if the decay $\bar{B}_{s} \rightarrow l^{+} l^{-} \gamma$ is interpreted as a Dalitz pair reaction $\bar{B}_{s} \rightarrow \gamma \gamma^{\star} \rightarrow \gamma l^{+} l^{-}$, without form factors. The factor $\left(1 / x_{\gamma}\right)^{2}$ results from the universal behaviour $f_{V, A, T} \sim 1 / x_{\gamma}$ given in Eq. (10), while the last factor is the electroweak effect associated with the coefficients $\eta_{9}=C_{9} /\left(2 C_{7}\right)$ and $\eta_{10}=C_{10} /\left(2 C_{7}\right)$. This distribution is plotted in Figs. 2 and 3, where the QED result is shown for comparison.

4.3. Rates and branching ratios

From the photon spectrum given in Eq. (23), we derive the 'conversion ratios'

$$
\begin{equation*}
R_{l}=\frac{\int_{0}^{1-4 r} \frac{d \Gamma}{d x_{\gamma}}\left(B_{s} \rightarrow l^{+} l^{-} \gamma\right)}{\Gamma\left(B_{s} \rightarrow \gamma \gamma\right)} \tag{24}
\end{equation*}
$$

The numerical values are $R_{e}=4.0 \%$ and $R_{\mu}=2.3 \%$. These are to be contrasted with the QED result given by

$$
\begin{equation*}
R_{l}(\mathrm{QED})=\frac{2 \alpha}{3 \pi}\left[\left(1-18 r^{2}+8 r^{3}\right) \ln \frac{1+\sqrt{1-4 r}}{1-\sqrt{1-4 r}}+\sqrt{1-4 r}\left(-\frac{7}{2}+13 r+4 r^{2}\right)\right] \tag{25}
\end{equation*}
$$

Fig. 2. Photon energy distribution for $\bar{B}_{s} \rightarrow e^{+} e^{-} \gamma$, normalized to $\bar{B}_{s} \rightarrow \gamma \gamma$. (Dashed line is the QED result.)

Fig. 3. Photon energy distribution for $\bar{B}_{s} \rightarrow \mu^{+} \mu^{-} \gamma$, normalized to $\bar{B}_{s} \rightarrow \gamma \gamma$. (Dashed line is the QED result.)

Table 1
Average charge asymmetry, Conversion ratio and Branching ratio for the decays $\bar{B}_{s} \rightarrow e^{+} e^{-} \gamma$ and $\bar{B}_{s} \rightarrow \mu^{+} \mu^{-} \gamma$. (Last column assumes $\underline{\left.\operatorname{Br}\left(\bar{B}_{s} \rightarrow \gamma \gamma\right)=5 \times 10^{-7}\right)}$

Decay	Average charge asymmetry	Conversion ratio	Branching ratio
	$\langle A\rangle$	$\frac{\Gamma\left(\bar{B}_{s} \rightarrow l^{+} l^{-} \gamma\right)}{\Gamma\left(\bar{B}_{s} \rightarrow \gamma \gamma\right)}$	$\frac{\Gamma\left(\bar{B}_{s} \rightarrow l^{+} l^{-} \gamma\right)}{\Gamma\left(\bar{B}_{s} \rightarrow \text { all }\right)}$
$\bar{B}_{s} \rightarrow e^{+} e^{-} \gamma$	-0.28	4.0%	2.0×10^{-8}
$\bar{B}_{s} \rightarrow \mu^{+} \mu^{-} \gamma$	-0.47	2.3%	1.2×10^{-8}

which yields $R_{e}(\mathrm{QED})=2.3 \%, R_{\mu}(\mathrm{QED})=0.67 \%$. The absolute branching ratios of $\bar{B}_{s} \rightarrow l^{+} l^{-} \gamma$, obtained by taking $\operatorname{Br}\left(B_{s} \rightarrow \gamma \gamma\right)=5 \times 10^{-7}[7,8]$ are $\operatorname{Br}\left(\bar{B}_{s} \rightarrow e^{+} e^{-} \gamma\right)=2.0 \times 10^{-8}, \operatorname{Br}\left(\bar{B}_{s} \rightarrow \mu^{+} \mu^{-} \gamma\right)=1.2 \times 10^{-8}$. Our results for the average charge asymmetry $\langle A\rangle_{l}$, the conversion ratios R_{l} and the branching ratios are summarized in Table 1.

5. Comments

(i) The branching ratios calculated by us are somewhat higher than those obtained in previous work [1,2], which used a different parametrization of the form factors $f_{V}, f_{A}, f_{T}, f_{T^{\prime}}$ based on QCD sum rules [1] and lightfront models [2]. In particular, these parametrizations do not satisfy the relation $f_{T}=f_{T}^{\prime}$ which, as noted in [4], follows from the identity $\sigma_{\mu \nu}=\frac{i}{2} \epsilon_{\mu \nu \alpha \beta} \sigma^{\alpha \beta} \gamma_{5}$.
(ii) Our predictions for the charge asymmetry $\langle A\rangle$ and the conversion ratio $\Gamma\left(\bar{B}_{s} \rightarrow l^{+} l^{-} \gamma\right) / \Gamma\left(\bar{B}_{s} \rightarrow \gamma \gamma\right)$ are independent of the parameter $\bar{\Lambda}_{s}$ which appears in the form factor in Eq. (16). The branching ratios in Table 1 assume $\operatorname{Br}\left(\bar{B}_{s} \rightarrow \gamma \gamma\right)=5 \times 10^{-7}$, and can be rescaled when data on this channel are available.
(iii) A full analysis of the decay $\bar{B}_{s} \rightarrow l^{+} l^{-} \gamma$ requires inclusion of the bremsstrahlung amplitude corresponding to photon emission from the leptons in $B_{s} \rightarrow l^{+} l^{-}$. This contribution is proportional to $f_{B_{s}} m_{l}$ and affects the photon energy spectrum in the small x_{γ} region. We have calculated the corrected spectrum for $B_{s} \rightarrow l^{+} l^{-} \gamma$, following the procedure in [11], and the result is shown in Fig. 4 for the case $l=\mu$. As anticipated, the correction is limited to small x_{γ}, and can be removed by a cut at small photon energies.
(iv) The QCD form factors in Eq. (16) are valid up to corrections of order $\left(\Lambda_{\mathrm{QCD}} / E_{\gamma}\right)^{2}$. In the small x_{γ} region, arguments based on heavy hadron chiral perturbation theory suggest form factors dominated by the B^{\star} pole

Fig. 4. Photon energy spectrum in $\bar{B}_{S} \rightarrow \mu^{+} \mu^{-} \gamma$, with bremsstrahlung (solid line) and without bremsstrahlung (dashed line).
with the appropriate quantum numbers, for example,

$$
\begin{equation*}
f_{V}\left(x_{\gamma}\right) \sim \frac{1}{M_{B_{s}}^{2}\left(1-x_{\gamma}\right)-M_{B_{s}^{\star}}^{2}} . \tag{26}
\end{equation*}
$$

Defining $M_{B_{s}^{\star}}-M_{B_{s}}=\Delta M$, this form factor has the behaviour $f_{V}\left(x_{\gamma}\right) \sim \frac{1}{x_{\gamma}+\delta}$, with $\delta \approx 2 \Delta M / M_{B_{s}} \approx 0.02$. We have investigated the effect of replacing the QCD form factor of Eq. (16) by a different universal form $f_{V, A, T}\left(x_{\gamma}\right)=f_{B_{s}} /\left(3 \bar{\Lambda}_{s}\left(x_{\gamma}+\delta\right)\right)$, and found only minor changes in the numbers given in Table 1. In general, one must expect some distortion in the spectrum at low x_{γ}, compared to that shown in Figs. 1-4.
(v) We will examine separately the predictions for $A\left(x_{\gamma}\right)$ and $d \Gamma / d x_{\gamma}$ in the reaction $B_{s} \rightarrow \tau^{+} \tau^{-} \gamma$, in which the bremsstrahlung part of the matrix element plays a significant role [11]. We will consider also refinements due to the q^{2}-dependent term in $C_{9}^{\text {eff }}$, and the effects of $c \bar{c}$ resonances.
In view of their clear signature, non-negligible branching ratios and interesting dynamics, the decays $B_{s} \rightarrow$ $l^{+} l^{-} \gamma$ could form an attractive domain of study at future hadron colliders.

Acknowledgements

We are indebted to Dr. Gudrun Hiller for drawing our attention to a sign error in the first version of this Letter. We thank Dr. Thorsten Feldmann for a helpful discussion. One of us (Y.D.) acknowledges a Doctoral stipend under the Graduiertenförderungs-gesetz of the state of Nordrhein-Westphalen.

References

[1] T.M. Aliev, A. Özpineci, M. Savci, Phys. Rev. D 55 (1997) 7059.
[2] C.Q. Geng, C.C. Lih, W.M. Zhang, Phys. Rev. D 62 (2000) 074017.
[3] G. Eilam, C.D. Lü, D.X. Zhang, Phys. Lett. B 391 (1997) 461;
G. Burdman, T. Goldman, D. Wyler, Phys. Rev. D 51 (9) (1995) 111;
G. Eilam, I. Halperin, R.R. Mendel, Phys. Lett. B 361 (1995) 137;
P. Colangelo, F. De Fazio, G. Nardulli, Phys. Lett. B 372 (1996) 311;
D. Atwood, G. Eilam, A. Soni, Mod. Phys. Lett. A 11 (1996) 1061;
C.Q. Geng, C.C. Lih, W.M. Zhang, Phys. Rev. D 57 (1998) 5697.
[4] G.P. Korchemsky, D. Pirjol, T.M. Yan, Phys. Rev. D 61 (2000) 114510.
[5] G. Buchalla, A.J. Buras, M.E. Lautenbacher, Rev. Mod. Phys. 68 (1996) 1125.
[6] Z. Xiong, J.M. Yang, Nucl. Phys. B 602 (2001) 289.
[7] C.V. Chang, G.L. Lin, Y.P. Yao, Phys. Lett. B 415 (1997) 395.
[8] L. Reina, G. Ricciardi, A. Soni, Phys. Rev. D 56 (1997) 5805;
G. Hiller, E.O. Iltan, Phys. Lett. B 409 (1997) 425-437.
[9] S. Herrlich, J. Kalinowski, Nucl. Phys. B 381 (1992) 501.
[10] F. Krüger, L.M. Sehgal, Phys. Lett. B 380 (1996) 199; C.S. Lim, T. Morozumi, A.I. Sanda, Phys. Lett. B 218 (1989) 343;
N.G. Deshpande, J. Trampetic, K. Panose, Phys. Rev. D 39 (1989) 1461; P.J. O’Donnell, M. Sutherland, H.K.K. Tung, Phys. Rev. D 46 (1992) 4091.
[11] T.M. Aliev, N.M. Pak, M. Savci, Phys. Lett. B 424 (1998) 175.

[^0]: E-mail addresses: dincer@physik.rwth-aachen.de (Y. Dinçer), sehgal@physik.rwth-aachen.de (L.M. Sehgal).

