

22 November 2001

PHYSICS LETTERS B

Physics Letters B 521 (2001) 7-14

www.elsevier.com/locate/npe

Charge asymmetry and photon energy spectrum in the decay $B_s \rightarrow l^+ l^- \gamma$

Yusuf Dinçer, Lalit M. Sehgal

Institute of Theoretical Physics, RWTH Aachen, D-52056 Aachen, Germany

Received 17 August 2001; received in revised form 25 September 2001; accepted 5 October 2001 Editor: P.V. Landshoff

Abstract

We consider the structure-dependent amplitude of the decay $B_s \rightarrow l^+ l^- \gamma$ $(l = e, \mu)$ in a model based on the effective Hamiltonian for $b\bar{s} \rightarrow l^+ l^-$ containing the Wilson coefficients C_7, C_9 and C_{10} . The form factors characterising the matrix elements $\langle \gamma | \bar{s} \gamma_{\mu} (1 \mp \gamma_5) b | \overline{B}_s \rangle$ and $\langle \gamma | \bar{s} \sigma_{\mu\nu} (1 \mp \gamma_5) b | \overline{B}_s \rangle$ are taken to have the universal form $f_V \approx f_A \approx f_T \approx$ $f_{B_s} M_{B_s} R_s / (3E_{\gamma})$ suggested by recent work in QCD, where R_s is a parameter related to the light cone wave function of the B_s meson. Simple expressions are obtained for the charge asymmetry $A(x_{\gamma})$ and the photon energy spectrum $d\Gamma/dx_{\gamma}(x_{\gamma} = 2E_{\gamma}/M_{B_s})$. The decay rates are calculated in terms of the decay rate of $B_s \rightarrow \gamma\gamma$. The branching ratios are estimated to be $Br(B_s \rightarrow e^+e^-\gamma) = 2.0 \times 10^{-8}$ and $Br(B_s \rightarrow \mu^+\mu^-\gamma) = 1.2 \times 10^{-8}$, somewhat higher than earlier estimates. © 2001 Published by Elsevier Science B.V. Open access under CC BY license.

1. Introduction

The rare decay $B_s \rightarrow l^+ l^- \gamma$ is of interest as a probe of the effective Hamiltonian for the transition $b\bar{s} \rightarrow l^+ l^-$, and as a testing ground for form factors describing the matrix elements $\langle \gamma | \bar{s} \gamma_{\mu} (1 \mp \gamma_5) b | \bar{B}_s \rangle$ and $\langle \gamma | \bar{s} i \sigma_{\mu\nu} (1 \mp \gamma_5) b | \bar{B}_s \rangle$ [1,2]. The branching ratio for $B_s \rightarrow l^+ l^- \gamma$ can be sizeable in comparison to the non-radiative process $B_s \rightarrow l^+ l^-$, since the chiral suppression of the latter is absent in the radiative transition. We will be concerned mainly with the structure-dependent part of the matrix element, since the correction due to bremsstrahlung from the external leptons is small and can be removed by eliminating the end-point region $s_{l+l^-} \approx M_{B_s}^2$. (For related studies of radiative *B* decays, we refer to the papers in Ref. [3].)

Our objective is to calculate the decay spectrum of $B_s \rightarrow l^+ l^- \gamma$ using form factors suggested by recent work in QCD [4]. These form factors have the virtue of possessing a universal behaviour $1/E_{\gamma}$ for large E_{γ} , as well as a universal normalization. These features can be tested in measurements of $B^+ \rightarrow \mu^+ \nu \gamma$ and $B_s \rightarrow \gamma \gamma$. We derive simple formulae for the photon energy spectrum $d\Gamma/dx_{\gamma}$, $x_{\gamma} = 2E_{\gamma}/m_{B_s}$, and the charge asymmetry $A(x_{\gamma})$, defined as the difference in the probability of events with $E_+ > E_-$ and $E_+ < E_-$, E_{\pm} being the l^{\pm} energies. This asymmetry is large over most of the x_{γ} domain. Predictions are obtained for the branching ratios $Br(B_s \rightarrow e^+e^-\gamma)$ and $Br(B_s \rightarrow \mu^+\mu^-\gamma)$ which are somewhat higher than those estimated in previous literature [1,2].

E-mail addresses: dincer@physik.rwth-aachen.de (Y. Dincer), sehgal@physik.rwth-aachen.de (L.M. Sehgal).

^{0370-2693 © 2001} Published by Elsevier Science B.V. Open access under CC BY license. PII: S0370-2693(01)01203-5

2. Matrix element and differential decay rate

The effective Hamiltonian for the interaction $b\bar{s} \rightarrow l^+ l^-$ has the standard form [5]

$$\mathcal{H}_{\rm eff} = \frac{\alpha G_F}{\sqrt{2}\pi} V_{tb} V_{ts}^{\star} \bigg\{ C_9^{\rm eff}(\bar{s}\gamma_{\mu}P_L b)\bar{l}\gamma_{\mu}l + C_{10}(\bar{s}\gamma_{\mu}P_L b)\bar{l}\gamma_{\mu}\gamma_5 l - 2\frac{C_7}{q^2}\bar{s}i\sigma_{\mu\nu}q^{\nu}(m_bP_R + m_sP_L)b\bar{l}\gamma_{\mu}l \bigg\},$$
(1)

where $P_{L,R} = (1 \mp \gamma_5)/2$ and q is the sum of the l^+ and l^- momenta. For the purpose of this Letter, we will neglect the small q^2 -dependent terms in C_9^{eff} , arising from one-loop contributions of four-quark operators, as well as long-distance effects associated with $c\bar{c}$ resonances. The Wilson coefficients in Eq. (1) will be taken to have the constant values

$$C_7 = -0.315, \qquad C_9 = 4.334, \qquad C_{10} = -4.624.$$
 (2)

To obtain the amplitude for $B_s \to l^+ l^- \gamma$, one requires the matrix elements $\langle \gamma | \bar{s} \gamma_\mu (1 \mp \gamma_5) b | \overline{B}_s \rangle$ and $\langle \gamma | \bar{s} i \sigma_{\mu\nu} (1 \mp \gamma_5) b | \overline{B}_s \rangle$. We parametrise these in the same way as in Ref. [1,2]

$$\langle \gamma(k) | \bar{s} \gamma_{\mu} b | \overline{B}_{s}(k+q) \rangle = e \,\epsilon_{\mu\nu\rho\sigma} \epsilon^{\star\nu} q^{\rho} k^{\sigma} f_{V}(q^{2}) / M_{B_{s}}, \langle \gamma(k) | \bar{s} \gamma_{\mu} \gamma_{5} b | \overline{B}_{s}(k+q) \rangle = -ie [\epsilon^{\star}_{\mu} k \cdot q - \epsilon^{\star} \cdot q k_{\mu}] f_{A}(q^{2}) / M_{B_{s}}, \langle \gamma(k) | \bar{s} i \sigma_{\mu\nu} q^{\nu} b | \overline{B}_{s}(k+q) \rangle = -e \,\epsilon_{\mu\nu\rho\sigma} \epsilon^{\star\nu} q^{\rho} k^{\sigma} f_{T}(q^{2}), \langle \gamma(k) | \bar{s} i \sigma_{\mu\nu} \gamma_{5} q^{\nu} b | \overline{B}_{s}(k+q) \rangle = -ie [\epsilon^{\star}_{\mu} k \cdot q - \epsilon^{\star} \cdot q k_{\mu}] f'_{T}(q^{2}).$$

$$(3)$$

The form factors f_V , f_A , f_T and f'_T are dimensionless, and related to those of Aliev et al. [1] by $f_V = g/M_{B_s}$, $f_A = f/M_{B_s}$, $f_T = -g_1/M_{B_s}^2$, $f'_T = -f_1/M_{B_s}^2$. The matrix element for $\overline{B}_s \to l^+ l^- \gamma$ can then be written as (neglecting terms of order m_s/m_b)

$$\mathcal{M}(\overline{B}_{s} \to l^{+}l^{-}\gamma) = \frac{\alpha G_{F}}{2\sqrt{2}\pi} e V_{lb} V_{ls}^{\star} \frac{1}{M_{B_{s}}} \Big[\epsilon_{\mu\nu\rho\sigma} \epsilon^{\star\nu} q^{\rho} k^{\sigma} \big(A_{1}\bar{l}\gamma^{\mu}l + A_{2}\bar{l}\gamma^{\mu}\gamma_{5}l \big) \\ + i \big(\epsilon_{\mu}^{\star}(k \cdot q) - (\epsilon^{\star} \cdot q)k_{\mu} \big) \big(B_{1}\bar{l}\gamma^{\mu}l + B_{2}\bar{l}\gamma^{\mu}\gamma_{5}l \big) \Big], \tag{4}$$

where

$$A_{1} = C_{9}f_{V} + 2C_{7}\frac{M_{B_{s}}^{2}}{q^{2}}f_{T}, \qquad A_{2} = C_{10}f_{V},$$

$$B_{1} = C_{9}f_{A} + 2C_{7}\frac{M_{B_{s}}^{2}}{q^{2}}f_{T}', \qquad B_{2} = C_{10}f_{A}.$$
(5)

(In the coefficient of C_7 , we have approximated $m_b M_{B_s}$ by $M_{B_s}^2$.) The Dalitz plot density in the energy variables E_{\pm} is

$$\frac{d\Gamma}{dE_{+}dE_{-}} = \frac{1}{256\pi^{3}M_{B_{s}}} \sum_{\text{spin}} |\mathcal{M}|^{2},$$
(6)

where [1,2,6]

$$\sum_{\text{spin}} |\mathcal{M}|^2 = \left| \frac{\alpha G_F}{\sqrt{2}\pi} V_{tb} V_{ts}^{\star} e \right|^2 \frac{1}{M_{B_s}^2} \\ \times \left\{ \left(|A_1|^2 + |B_1|^2 \right) \left[q^2 \left\{ (p_+ \cdot k)^2 + (p_- \cdot k)^2 \right\} + 2m_l^2 (q \cdot k)^2 \right] \right\} \right\}$$

Y. Dinçer, L.M. Sehgal / Physics Letters B 521 (2001) 7–14

$$+ (|A_2|^2 + |B_2|^2) [q^2 \{ (p_+ \cdot k)^2 + (p_- \cdot k)^2 \} - 2m_l^2 (q \cdot k)^2] + 2 \operatorname{Re} (B_1^* A_2 + A_1^* B_2) q^2 [(p_+ \cdot k)^2 - (p_- \cdot k)^2] \}.$$
(7)

9

It is convenient to introduce dimensionless variables

$$x_{\gamma} = 2E_{\gamma}/M_{B_s}, \qquad x_{\pm} = 2E_{\pm}/M_{B_s}, \qquad \Delta = x_{\pm} - x_{-}, \qquad r = m_l^2/M_{B_s}^2$$
(8)

in terms of which $q^2 = M_{B_s}^2 (1 - x_{\gamma})$. Taking x_{γ} and Δ as the two coordinates of the Dalitz plot, phase space is defined by

$$|\Delta| \le v x_{\gamma}, \quad v = \sqrt{1 - 4m_l^2/q^2} = \sqrt{1 - 4r/(1 - x_{\gamma})}, \\ 0 \le x_{\gamma} \le 1 - 4r.$$
(9)

In terms of x_{γ} and Δ , the differential decay width takes the form

$$\frac{d\Gamma}{dx_{\gamma} d\Delta} = \mathcal{N} \bigg[\big(|A_1|^2 + |B_1|^2 \big) \bigg\{ \frac{(1 - x_{\gamma})(x_{\gamma}^2 + \Delta^2)}{8} + \frac{1}{2} r x_{\gamma}^2 \bigg\} \\ + \big(|A_2|^2 + |B_2|^2 \big) \bigg\{ \frac{(1 - x_{\gamma})(x_{\gamma}^2 + \Delta^2)}{8} - \frac{1}{2} r x_{\gamma}^2 \bigg\} + 2 \operatorname{Re} \big(B_1^{\star} A_2 + A_1^{\star} B_2 \big) (1 - x_{\gamma}) \frac{1}{4} x_{\gamma} \Delta \bigg],$$
(10)

where $\mathcal{N} = [\alpha^2 G_F^2 / (256\pi^4)] |V_{lb} V_{ls}^{\star}|^2 M_{B_s}^5$. The last term is linear in Δ and produces an asymmetry between the l^+ and l^- energy spectra.

We will derive from Eq. (10) two distributions of interest:

(i) The charge asymmetry $A(x_{\gamma})$ defined as

$$A(x_{\gamma}) = \frac{\left(\int_{0}^{vx_{\gamma}} \frac{d\Gamma}{dx_{\gamma} d\Delta} - \int_{-vx_{\gamma}}^{0} \frac{d\Gamma}{dx_{\gamma} d\Delta}\right) d\Delta}{\int_{-vx_{\gamma}}^{+vx_{\gamma}} \frac{d\Gamma}{dx_{\gamma} d\Delta} d\Delta}$$

= $\frac{3}{4}v(1-x_{\gamma})\frac{2\operatorname{Re}(B_{1}^{\star}A_{2} + A_{1}^{\star}B_{2})}{\{(|A_{1}|^{2} + |B_{1}|^{2})(1-x_{\gamma} + 2r) + (|A_{2}|^{2} + |B_{2}|^{2})(1-x_{\gamma} - 4r)\}}.$ (11)

(ii) The photon energy spectrum

$$\frac{d\Gamma}{dx_{\gamma}} = \frac{\alpha^3 G_F^2}{768\pi^4} |V_{tb}V_{ts}^{\star}|^2 M_{B_s}^5 v x_{\gamma}^3 \Big[(|A_1|^2 + |B_1|^2)(1 - x + 2r) + (|A_2|^2 + |B_2|^2)(1 - x_{\gamma} - 4r) \Big].$$
(12)

To proceed further, we must introduce a model for the form factors which appear in the functions $A_{1,2}$ and $B_{1,2}$ defined in Eq. (5).

3. Model for form factors

First of all, we note that the form factors f_T and f'_T defined in Eq. (3) are necessarily equal, by virtue of the identity

$$\sigma_{\mu\nu} = \frac{\iota}{2} \epsilon_{\mu\nu\alpha\beta} \sigma^{\alpha\beta} \gamma_5. \tag{13}$$

This was pointed out by Korchemsky et al. [4]. We, therefore, have to deal with three independent form factors f_V , f_A and f_T . These have been computed in Ref. [4] using perturbative QCD methods combined with heavy

quark effective theory. For the vector and axial vector form factors of the radiative decay $B^+ \rightarrow l^+ \nu \gamma$, and their tensor counterpart, defined as in Eq. (3), these authors obtain the remarkable result

$$f_V(E_\gamma) = f_A(E_\gamma) = f_T(E_\gamma) = \frac{f_B m_B}{2E_\gamma} \left(Q_u R - \frac{Q_b}{m_b} \right) + \mathcal{O}\left(\frac{A_{\text{QCD}}^2}{E_\gamma^2}\right),\tag{14}$$

where *R* is a parameter related to the light-cone wave-function of the *B* meson, with an order of magnitude $R^{-1} \sim \overline{\Lambda} = M_B - m_b$, where the binding energy $\overline{\Lambda}$ is estimated to be between 0.3 and 0.4 GeV. Applying the same reasoning to the form factors for $\overline{B}_s \rightarrow l^+ l^- \gamma$, we conclude that

$$f_V(E_\gamma) = f_A(E_\gamma) = f_T(E_\gamma) = \frac{f_{B_S} M_{B_s}}{2E_\gamma} \left(-Q_s R_s + \frac{Q_b}{m_b} \right) + \mathcal{O}\left(\frac{\Lambda_{\rm QCD}^2}{E_\gamma^2}\right).$$
(15)

In what follows, we will neglect the term Q_b/m_b , and approximate the form factors by

$$f_{V,A,T}(E_{\gamma}) \approx \frac{f_{B_s} M_{B_s}}{2E_{\gamma}} \frac{1}{3\bar{\Lambda}_s} = \frac{1}{3} \frac{f_B}{\bar{\Lambda}_s} \frac{1}{x_{\gamma}},$$
 (16)

where $\bar{A}_s = M_{B_s} - m_b$ will be taken to have the nominal value 0.5 GeV. Several of our results will depend only on the universal form $f_{V,A,T}(E_{\gamma}) \sim 1/E_{\gamma}$, independent of the normalization. As pointed out in [4], a check of the behaviour $f_{V,A} \sim 1/E_{\gamma}$ in the case of $B^+ \rightarrow \mu^+ \nu \gamma$ is afforded by the photon energy spectrum, which is predicted to be

$$\frac{d\Gamma}{dx_{\gamma}} \sim \left[f_V^2(E_{\gamma}) + f_A^2(E_{\gamma}) \right] x_{\gamma}^3 (1 - x_{\gamma}) \sim x_{\gamma} (1 - x_{\gamma}).$$
(17)

In the case of the reaction $B_s \to l^+ l^- \gamma$, the normalization of the tensor form factor $f_T(E_\gamma)$ at $E_\gamma = M_B/2$ (i.e., $x_\gamma = 1$) can be checked by appeal to the decay rate of $B_s \to \gamma \gamma$. To see this connection, we note that the matrix element of $B_s \to \gamma(k, \epsilon) + \gamma(k', \epsilon')$ can be obtained from that of $B_s \to l^+ l^- \gamma$ by putting $C_9 = C_{10} = 0$, and replacing the factor $(ef_T C_7/q^2)(\bar{l}\gamma\mu l)$ by $f_T(x_\gamma = 1)\epsilon_{\mu}^{*\prime}$. This yields the matrix element

$$\mathcal{M}(\overline{B}_s \to \gamma(\epsilon, k)\gamma(\epsilon', k')) = -i\frac{G_F e^2}{\sqrt{2}\pi^2} (V_{tb}V_{ts}^{\star}) [A^+ F_{\mu\nu}F^{\mu\nu'} + iA^- F_{\mu\nu}\widetilde{F}^{\mu\nu'}]$$

with

$$A^{+} = -A^{-} = \frac{1}{4} M_{B_s} f_T(x_{\gamma} = 1) C_7.$$
⁽¹⁸⁾

The result for A^{\pm} coincides with that obtained in Refs. [7–9] when $f_T(x_{\gamma} = 1) = -\frac{Q_d f_B}{\bar{A}_s} = \frac{1}{3} \frac{f_B}{\bar{A}_s}$. (In Refs. [8,9], the role of the parameter A_s is played by the constituent quark mass m_s .) Thus the decay width of $B_s \to \gamma \gamma$,

$$\Gamma(B_s \to \gamma \gamma) = \frac{M_{B_s}^3}{16\pi} \left| \frac{G_F e^2}{\sqrt{2}\pi^2} V_{tb} V_{ts}^* \right|^2 \left(|A_+|^2 + |A_-|^2 \right)$$
(19)

serves as a test of the normalization factor $f_T(x_{\gamma} = 1)$.

We remark, parenthetically, that the calculation of $B_s \to \gamma \gamma$, based on an effective interaction for $b \to s \gamma \gamma$, produces the amplitudes A^+ and A^- given in Eq. (18) in the limit of retaining only the 'reducible' diagrams related to the transition $b \to s\gamma$. Inclusion of 'irreducible' contributions like $b\bar{s} \to c\bar{c} \to \gamma\gamma$ introduces a correction term in A_- causing the ratio $|A_+/A_-|$ to deviate from unity. Estimates in Ref. [7,8] yield values for this ratio between 0.75 and 0.9. The branching ratio Br $(B_s \to \gamma\gamma)$ is estimated at 5×10^{-7} , with an uncertainty of about 50%.

Having specified our model for the form factors $f_V(x_\gamma)$, $f_A(x_\gamma)$ and $f_T(x_\gamma)$, we proceed to present results for the spectrum and branching ratio of $B_s \rightarrow l^+ l^- \gamma$ [10]. We use $M_{B_s} = 5.3$ GeV, $f_{B_s} = 200$ MeV and, where necessary, $\bar{\Lambda}_s = 0.5$ GeV in the normalization of the form factors in Eq. (16).

4. Results

4.1. Charge asymmetry

With the assumption of universal form factors $f_V = f_A = f_T \sim \frac{1}{x_{\gamma}}$, the asymmetry $A(x_{\gamma})$ in Eq. (11) assumes the simple form

$$A(x_{\gamma}) = \frac{3}{4} v \frac{2C_{10} \left(C_{9} + 2C_{7} \frac{1}{1 - x_{\gamma}}\right) (1 - x_{\gamma})}{\left(C_{9} + 2C_{7} \frac{1}{1 - x_{\gamma}}\right)^{2} (1 - x_{\gamma} + 2r) + C_{10}^{2} (1 - x_{\gamma} - 4r)}.$$
(20)

This is plotted in Fig. 1, and is clearly large and negative over most of the x_{γ} domain, changing sign at $x_{\gamma} = 1 + \frac{2C_{\gamma}}{C_{9}}$. (A negative asymmetry corresponds to l^{-} being more energetic, on average, than l^{+} in the decay $\overline{B_{s}}(=b\overline{s}) \rightarrow l^{+}l^{-}\gamma$.) The average charge asymmetry is

$$\langle A \rangle = \frac{3}{4} \frac{\int_0^{1-4r} dx_\gamma \, v^2 x_\gamma (1-x_\gamma) 2C_{10} \left(C_9 + 2C_7 \frac{1}{1-x_\gamma}\right)}{\int_0^{1-4r} dx_\gamma \, v x_\gamma \left[(1-x_\gamma + 2r) \left(C_9 + 2C_7 \frac{1}{1-x_\gamma}\right)^2 + (1-x_\gamma - 4r)C_{10}^2 \right]} \tag{21}$$

and has the numerical value $\langle A \rangle_e = -0.28$, $\langle A \rangle_\mu = -0.47$ for the modes $l = e, \mu$, the difference arising essentially from the end-point region $x_\gamma \approx 1 - 4r$.

4.2. Photon energy spectrum

With the form factors of Eq. (16), the photon energy spectrum simplifies to

$$\frac{d\Gamma}{dx_{\gamma}} = \frac{1}{3} \mathcal{N} v x_{\gamma} \left\{ (1 - x_{\gamma} + 2r) \left(C_9 + 2C_7 \frac{1}{1 - x_{\gamma}} \right)^2 + (1 - x_{\gamma} - 4r) C_{10}^2 \right\},\tag{22}$$

where the constant factor \mathcal{N} is defined after Eq. (10). It is expedient to write this distribution in terms of the decay rate of $\overline{B}_s \to \gamma \gamma$. We then obtain the prediction

$$\frac{d\Gamma(B_{s} \to l^{+}l^{-}\gamma)/dx_{\gamma}}{\Gamma(\overline{B}_{s} \to \gamma\gamma)} = \left\{ \frac{2\alpha}{3\pi} \frac{x_{\gamma}^{3}}{(1-x_{\gamma})^{2}} v(1-x_{\gamma}+2r) \right\} \left(\frac{1}{x_{\gamma}} \right)^{2} \left[\left\{ \eta_{9}(1-x_{\gamma})+1 \right\}^{2} + \left\{ \eta_{10}(1-x_{\gamma}) \right\}^{2} \frac{1-x_{\gamma}-4r}{1-x_{\gamma}+2r} \right].$$
(23)
$$0.6 \\ 0.4 \\ 0.2$$

Fig. 1. Asymmetry versus x_{γ} .

The first factor (in curly brackets {}) is the QED result expected if the decay $\overline{B}_s \rightarrow l^+ l^- \gamma$ is interpreted as a Dalitz pair reaction $\overline{B}_s \rightarrow \gamma \gamma^* \rightarrow \gamma l^+ l^-$, without form factors. The factor $(1/x_{\gamma})^2$ results from the universal behaviour $f_{V,A,T} \sim 1/x_{\gamma}$ given in Eq. (10), while the last factor is the electroweak effect associated with the coefficients $\eta_9 = C_9/(2C_7)$ and $\eta_{10} = C_{10}/(2C_7)$. This distribution is plotted in Figs. 2 and 3, where the QED result is shown for comparison.

4.3. Rates and branching ratios

From the photon spectrum given in Eq. (23), we derive the 'conversion ratios'

$$R_{l} = \frac{\int_{0}^{1-4r} \frac{d\Gamma}{dx_{\gamma}} (B_{s} \to l^{+}l^{-}\gamma)}{\Gamma(B_{s} \to \gamma\gamma)}.$$
(24)

The numerical values are $R_e = 4.0\%$ and $R_{\mu} = 2.3\%$. These are to be contrasted with the QED result given by

Fig. 2. Photon energy distribution for $\overline{B}_s \to e^+ e^- \gamma$, normalized to $\overline{B}_s \to \gamma \gamma$. (Dashed line is the QED result.)

Fig. 3. Photon energy distribution for $\overline{B}_s \to \mu^+ \mu^- \gamma$, normalized to $\overline{B}_s \to \gamma \gamma$. (Dashed line is the QED result.)

Table 1

Average charge asymmetry, Conversion ratio and Branching ratio for the decays $\overline{B}_s \to e^+ e^- \gamma$ and $\overline{B}_s \to \mu^+ \mu^- \gamma$. (Last column assumes $\operatorname{Br}(\overline{B}_s \to \gamma \gamma) = 5 \times 10^{-7}$)

Decay	Average charge asymmetry	Conversion ratio	Branching ratio
	$\langle A angle$	$\frac{\Gamma(\overline{B}_s \to l^+ l^- \gamma)}{\Gamma(\overline{B}_s \to \gamma \gamma)}$	$\frac{\Gamma(\overline{B}_s \to l^+ l^- \gamma)}{\Gamma(\overline{B}_s \to \text{all})}$
$\overline{B}_s \to e^+ e^- \gamma$	-0.28	4.0%	2.0×10^{-8}
$\overline{B}_s \to \mu^+ \mu^- \gamma$	-0.47	2.3%	1.2×10^{-8}

which yields $R_e(\text{QED}) = 2.3\%$, $R_\mu(\text{QED}) = 0.67\%$. The absolute branching ratios of $\overline{B}_s \rightarrow l^+ l^- \gamma$, obtained by taking $\text{Br}(B_s \rightarrow \gamma \gamma) = 5 \times 10^{-7}$ [7,8] are $\text{Br}(\overline{B}_s \rightarrow e^+ e^- \gamma) = 2.0 \times 10^{-8}$, $\text{Br}(\overline{B}_s \rightarrow \mu^+ \mu^- \gamma) = 1.2 \times 10^{-8}$. Our results for the average charge asymmetry $\langle A \rangle_l$, the conversion ratios R_l and the branching ratios are summarized in Table 1.

5. Comments

- (i) The branching ratios calculated by us are somewhat higher than those obtained in previous work [1,2], which used a different parametrization of the form factors f_V , f_A , f_T , $f_{T'}$ based on QCD sum rules [1] and light-front models [2]. In particular, these parametrizations do not satisfy the relation $f_T = f'_T$ which, as noted in [4], follows from the identity $\sigma_{\mu\nu} = \frac{i}{2} \epsilon_{\mu\nu\alpha\beta} \sigma^{\alpha\beta} \gamma_5$.
- (ii) Our predictions for the charge asymmetry $\langle A \rangle$ and the conversion ratio $\Gamma(\overline{B}_s \to l^+ l^- \gamma)/\Gamma(\overline{B}_s \to \gamma \gamma)$ are independent of the parameter \overline{A}_s which appears in the form factor in Eq. (16). The branching ratios in Table 1 assume Br $(\overline{B}_s \to \gamma \gamma) = 5 \times 10^{-7}$, and can be rescaled when data on this channel are available.
- (iii) A full analysis of the decay $\overline{B_s} \to l^+ l^- \gamma$ requires inclusion of the bremsstrahlung amplitude corresponding to photon emission from the leptons in $B_s \to l^+ l^-$. This contribution is proportional to $f_{B_s}m_l$ and affects the photon energy spectrum in the small x_{γ} region. We have calculated the corrected spectrum for $B_s \to l^+ l^- \gamma$, following the procedure in [11], and the result is shown in Fig. 4 for the case $l = \mu$. As anticipated, the correction is limited to small x_{γ} , and can be removed by a cut at small photon energies.
- (iv) The QCD form factors in Eq. (16) are valid up to corrections of order $(\Lambda_{QCD}/E_{\gamma})^2$. In the small x_{γ} region, arguments based on heavy hadron chiral perturbation theory suggest form factors dominated by the B^* pole

Fig. 4. Photon energy spectrum in $\overline{B}_s \to \mu^+ \mu^- \gamma$, with bremsstrahlung (solid line) and without bremsstrahlung (dashed line).

with the appropriate quantum numbers, for example,

$$f_V(x_\gamma) \sim \frac{1}{M_{B_s}^2(1-x_\gamma) - M_{B_s^\star}^2}.$$
(26)

Defining $M_{B_s^{\star}} - M_{B_s} = \Delta M$, this form factor has the behaviour $f_V(x_{\gamma}) \sim \frac{1}{x_{\gamma} + \delta}$, with $\delta \approx 2\Delta M / M_{B_s} \approx 0.02$. We have investigated the effect of replacing the QCD form factor of Eq. (16) by a different universal form $f_{V,A,T}(x_{\gamma}) = f_{B_{\gamma}}/(3A_{\delta}(x_{\gamma}+\delta))$, and found only minor changes in the numbers given in Table 1. In general, one must expect some distortion in the spectrum at low x_{γ} , compared to that shown in Figs. 1–4.

(v) We will examine separately the predictions for $A(x_{\gamma})$ and $d\Gamma/dx_{\gamma}$ in the reaction $B_s \to \tau^+ \tau^- \gamma$, in which the bremsstrahlung part of the matrix element plays a significant role [11]. We will consider also refinements due to the q^2 -dependent term in C_q^{eff} , and the effects of $c\bar{c}$ resonances.

In view of their clear signature, non-negligible branching ratios and interesting dynamics, the decays $B_s \rightarrow \infty$ $l^+l^-\gamma$ could form an attractive domain of study at future hadron colliders.

Acknowledgements

We are indebted to Dr. Gudrun Hiller for drawing our attention to a sign error in the first version of this Letter. We thank Dr. Thorsten Feldmann for a helpful discussion. One of us (Y.D.) acknowledges a Doctoral stipend under the Graduiertenförderungs-gesetz of the state of Nordrhein-Westphalen.

References

- [1] T.M. Aliev, A. Özpineci, M. Savci, Phys. Rev. D 55 (1997) 7059.
- [2] C.O. Geng, C.C. Lih, W.M. Zhang, Phys. Rev. D 62 (2000) 074017.
- [3] G. Eilam, C.D. Lü, D.X. Zhang, Phys. Lett. B 391 (1997) 461; G. Burdman, T. Goldman, D. Wyler, Phys. Rev. D 51 (9) (1995) 111; G. Eilam, I. Halperin, R.R. Mendel, Phys. Lett. B 361 (1995) 137; P. Colangelo, F. De Fazio, G. Nardulli, Phys. Lett. B 372 (1996) 311; D. Atwood, G. Eilam, A. Soni, Mod. Phys. Lett. A 11 (1996) 1061; C.Q. Geng, C.C. Lih, W.M. Zhang, Phys. Rev. D 57 (1998) 5697.
- [4] G.P. Korchemsky, D. Pirjol, T.M. Yan, Phys. Rev. D 61 (2000) 114510.
- [5] G. Buchalla, A.J. Buras, M.E. Lautenbacher, Rev. Mod. Phys. 68 (1996) 1125.
- [6] Z. Xiong, J.M. Yang, Nucl. Phys. B 602 (2001) 289.
- [7] C.V. Chang, G.L. Lin, Y.P. Yao, Phys. Lett. B 415 (1997) 395.
- [8] L. Reina, G. Ricciardi, A. Soni, Phys. Rev. D 56 (1997) 5805;
- G. Hiller, E.O. Iltan, Phys. Lett. B 409 (1997) 425-437. [9] S. Herrlich, J. Kalinowski, Nucl. Phys. B 381 (1992) 501.
- [10] F. Krüger, L.M. Sehgal, Phys. Lett. B 380 (1996) 199; C.S. Lim, T. Morozumi, A.I. Sanda, Phys. Lett. B 218 (1989) 343; N.G. Deshpande, J. Trampetic, K. Panose, Phys. Rev. D 39 (1989) 1461; P.J. O'Donnell, M. Sutherland, H.K.K. Tung, Phys. Rev. D 46 (1992) 4091.
- [11] T.M. Aliev, N.M. Pak, M. Savci, Phys. Lett. B 424 (1998) 175.