54 research outputs found

    Cleavage of ST6Gal I by Radiation-Induced BACE1 Inhibits Golgi-Anchored ST6Gal I-Mediated Sialylation of Integrin β1 and Migration in Colon Cancer Cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previously, we found that β-galactoside α2,6-sialyltransferase (ST6Gal I), an enzyme that adds sialic acids to N-linked oligosaccharides of glycoproteins and is frequently overexpressed in cancer cells, is up-regulated by ionizing radiation (IR) and cleaved to a form possessing catalytic activity comparable to that of the Golgi-localized enzyme. Moreover, this soluble form is secreted into the culture media. Induction of ST6Gal I significantly increased the migration of colon cancer cells via sialylation of integrin β1. Here, we further investigated the mechanisms underlying ST6Gal I cleavage, solubilization and release from cells, and addressed its functions, focusing primarily on cancer cell migration.</p> <p>Methods</p> <p>We performed immunoblotting and lectin affinity assay to analyze the expression of ST6 Gal I and level of sialylated integrin β1. After ionizing radiation, migration of cells was measured by in vitro migration assay. α2, 6 sialylation level of cell surface was analyzed by flow cytometry. Cell culture media were concentrated and then analyzed for soluble ST6Gal I levels using an α2, 6 sialyltransferase sandwich ELISA.</p> <p>Result</p> <p>We found that ST6Gal I was cleaved by BACE1 (β-site amyloid precursor protein-cleaving enzyme), which was specifically overexpressed in response to IR. The soluble form of ST6Gal I, which also has sialyltransferase enzymatic activity, was cleaved from the Golgi membrane and then released into the culture media. Both non-cleaved and cleaved forms of ST6Gal I significantly increased colon cancer cell migration in a sialylation-dependent manner. The pro-migratory effect of the non-cleaved form of ST6Gal I was dependent on integrin β1 sialylation, whereas that of the cleaved form of ST6Gal I was not, suggesting that other intracellular sialylated molecules apart from cell surface molecules such as integrin β1 might be involved in mediating the pro-migratory effects of the soluble form of ST6Gal I. Moreover, production of soluble form ST6Gal I by BACE 1 inhibited integrin β1 sialylation and migration by Golgi-anchored form of ST6Gal I.</p> <p>Conclusions</p> <p>Our results suggest that soluble ST6Gal I, possibly in cooperation with the Golgi-bound form, may participate in cancer progression and metastasis prior to being secreted from cancer cells.</p

    Roflumilast partially reverses smoke-induced mucociliary dysfunction

    Full text link
    BACKGROUND: Phosphodiesterases (PDEs) break down cAMP, thereby regulating intracellular cAMP concentrations and diffusion. Since PDE4 predominates in airway epithelial cells, PDE4 inhibitors can stimulate Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) by increasing cAMP. Tobacco smoking and COPD are associated with decreased CFTR function and impaired mucociliary clearance (MCC). However, the effects of the PDE4 inhibitor roflumilast on smoke-induced mucociliary dysfunction have not been fully explored. METHODS: Primary normal human bronchial epithelial cells (NHBE) from non-smokers, cultured at the air-liquid interface (ALI) were used for most experiments. Cultures were exposed to cigarette smoke in a Vitrocell VC-10 smoking robot. To evaluate the effect of roflumilast on intracellular cAMP concentrations, fluorescence resonance energy transfer (FRET) between CFP- and YFP-tagged protein kinase A (PKA) subunits was recorded. Airway surface liquid (ASL) was measured using light refraction scanning and ciliary beat frequency (CBF) employing infrared differential interference contrast microscopy. Chloride conductance was measured in Ussing chambers and CFTR expression was quantified with qPCR. RESULTS: While treatment with 100 nM roflumilast had little effect alone, it increased intracellular cAMP upon stimulation with forskolin and albuterol in cultures exposed to cigarette smoke and in control conditions. cAMP baselines were lower in smoke-exposed cells. Roflumilast prolonged cAMP increases in smoke-exposed and control cultures. Smoke-induced reduction in functional, albuterol-mediated chloride conductance through CFTR was improved by roflumilast. ASL volumes also increased in smoke-exposed cultures in the presence of roflumilast while it did not in its absence. Cigarette smoke exposure decreased CBF, an effect rescued with roflumilast, particularly when used together with the long-acting ß-mimetic formoterol. Roflumilast also enhanced forskolin-induced CBF stimulation in ASL volume supplemented smoked and control cells, confirming the direct stimulatory effect of rising cAMP on ciliary function. In active smokers, CFTR mRNA expression was increased compared to non-smokers and ex-smokers. Roflumilast also increased CFTR mRNA levels in cigarette-smoke exposed cell cultures. CONCLUSIONS: Our results show that roflumilast can rescue smoke-induced mucociliary dysfunction by reversing decreased CFTR activity, augmenting ASL volume, and stimulating CBF, the latter particularly in combination with formoterol. As expected, CFTR mRNA expression was not indicative of apical CFTR function

    Evidence for widespread hydrated minerals on asteroid (101955) Bennu

    Get PDF
    Early spectral data from the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission reveal evidence for abundant hydrated minerals on the surface of near-Earth asteroid (101955) Bennu in the form of a near-infrared absorption near 2.7 µm and thermal infrared spectral features that are most similar to those of aqueously altered CM-type carbonaceous chondrites. We observe these spectral features across the surface of Bennu, and there is no evidence of substantial rotational variability at the spatial scales of tens to hundreds of metres observed to date. In the visible and near-infrared (0.4 to 2.4 µm) Bennu’s spectrum appears featureless and with a blue (negative) slope, confirming previous ground-based observations. Bennu may represent a class of objects that could have brought volatiles and organic chemistry to Earth

    The dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements

    Get PDF
    The top-shaped morphology characteristic of asteroid (101955) Bennu, often found among fast-spinning asteroids and binary asteroid primaries, may have contributed substantially to binary asteroid formation. Yet a detailed geophysical analysis of this morphology for a fast-spinning asteroid has not been possible prior to the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission. Combining the measured Bennu mass and shape obtained during the Preliminary Survey phase of the OSIRIS-REx mission, we find a notable transition in Bennu’s surface slopes within its rotational Roche lobe, defined as the region where material is energetically trapped to the surface. As the intersection of the rotational Roche lobe with Bennu’s surface has been most recently migrating towards its equator (given Bennu’s increasing spin rate), we infer that Bennu’s surface slopes have been changing across its surface within the last million years. We also find evidence for substantial density heterogeneity within this body, suggesting that its interior is a mixture of voids and boulders. The presence of such heterogeneity and Bennu’s top shape are consistent with spin-induced failure at some point in its past, although the manner of its failure cannot yet be determined. Future measurements by the OSIRIS-REx spacecraft will provide insight into and may resolve questions regarding the formation and evolution of Bennu’s top-shape morphology and its link to the formation of binary asteroids

    Integration of oncology and palliative care : a Lancet Oncology Commission

    Get PDF
    Full integration of oncology and palliative care relies on the specific knowledge and skills of two modes of care: the tumour-directed approach, the main focus of which is on treating the disease; and the host-directed approach, which focuses on the patient with the disease. This Commission addresses how to combine these two paradigms to achieve the best outcome of patient care. Randomised clinical trials on integration of oncology and palliative care point to health gains: improved survival and symptom control, less anxiety and depression, reduced use of futile chemotherapy at the end of life, improved family satisfaction and quality of life, and improved use of health-care resources. Early delivery of patient-directed care by specialist palliative care teams alongside tumour-directed treatment promotes patient-centred care. Systematic assessment and use of patient-reported outcomes and active patient involvement in the decisions about cancer care result in better symptom control, improved physical and mental health, and better use of health-care resources. The absence of international agreements on the content and standards of the organisation, education, and research of palliative care in oncology are major barriers to successful integration. Other barriers include the common misconception that palliative care is end-of-life care only, stigmatisation of death and dying, and insufficient infrastructure and funding. The absence of established priorities might also hinder integration more widely. This Commission proposes the use of standardised care pathways and multidisciplinary teams to promote integration of oncology and palliative care, and calls for changes at the system level to coordinate the activities of professionals, and for the development and implementation of new and improved education programmes, with the overall goal of improving patient care. Integration raises new research questions, all of which contribute to improved clinical care. When and how should palliative care be delivered? What is the optimal model for integrated care? What is the biological and clinical effect of living with advanced cancer for years after diagnosis? Successful integration must challenge the dualistic perspective of either the tumour or the host, and instead focus on a merged approach that places the patient's perspective at the centre. To succeed, integration must be anchored by management and policy makers at all levels of health care, followed by adequate resource allocation, a willingness to prioritise goals and needs, and sustained enthusiasm to help generate support for better integration. This integrated model must be reflected in international and national cancer plans, and be followed by developments of new care models, education and research programmes, all of which should be adapted to the specific cultural contexts within which they are situated. Patient-centred care should be an integrated part of oncology care independent of patient prognosis and treatment intention. To achieve this goal it must be based on changes in professional cultures and priorities in health care

    Effects of Insect Mass Outbreaks on Throughfall Composition in Even Aged European Pine Stands - Implications for the C and N Cycling

    No full text
    In this paper we report on the herbivore-affected C and N concentrations in the throughfall and altered canopy to soil transfer during a Pine Lappet (Dendrolimus pini L) mass infestation in 60-year-old Scots Pine (Pinus sylvestris L) forests. Our investigations covered a period of 7 months and could show, that herbivore defoliation significantly altered C and N concentrations in the throughfall solution and enhanced organic matter input situation to the forest floor. Compared to the uninfested site mean concentrations of the throughfall solution at the infested site under strong frass activity contained 80% more C and 61% more N. Additionally, C and N inputs were with 131 kg C ha-1 time-1 and 9.6 kg N ha-1 time-1 higher under strong frass activity during 3 months compared to the input at the uninfested site. We assume that outbreaks of phytophagous insects play an important key role in monoculture forest by influencing the nutrient turnover

    Modelling the transport of geometrically necessary dislocations on slip systems: application to single- and multi-crystals of ice

    No full text
    International audienceA model based on the elastic theory of continuously distributed dislocations that accounts for the transport of geometrically necessary dislocations (GND) on slip systems is developed. It allows keeping the crystallographic nature of glide by allocating velocities specific to slip systems to GND. At grain boundaries, the dislocation transport equation is resolved between a specific system in a grain and a specific system in the adjacent grain. It is used to simulate a compression creep test followed by unloading of a multiple slip deforming multi-crystal of ice during which kink band formation, grain boundary migration and localized grain nucleation are observed. The model predictions are compared to 2D strain fields obtained by digital image correlation and show a good agreement. Besides, the kink band position corresponds very well with an area of strong lattice misorientation predicted by the model and is also bounded by opposite densities of edge dislocations, in agreement with kink banding theory and characterization. Furthermore, the grain boundary migration is observed to happen from predicted low dislocation density area towards high dislocation ones, also in agreement with the theory. Lastly, the triple junctions where nucleation is observed are also characterized by high GND density and especially strong gradient of elastic energy density. These different features show the relevance of using a continuum theory of polarized dislocations per slip system to study the onset of relaxation mechanisms like kink banding, grain boundary migration and grain nucleation and possibly to propose nucleation and migration criteria
    corecore