103 research outputs found

    Growing human-scale scala tympani-like in vitro cell constructs

    Full text link
    Emerging materials and electrode technologies have potential to revolutionise development of higher resolution next-generation, bionic devices. However, barriers associated with the extended timescales, regulatory constraints, and opportunity costs of preclinical and clinical studies, can inhibit such innovation. Development of in vitro models that mimic human tissues would provide an enabling platform to overcome many of these barriers in the product development pathway. This research aimed to develop human-scale tissue engineered cochlea models for high throughput evaluation of cochlear implants on the bench. Novel mould-casting techniques and stereolithography three-dimensional (3D) printing approaches to template hydrogels into spiral-shaped structures resembling the scala tympani were compared. While hydrogels are typically exploited to support 3D tissue-like structures, the challenge lies in developing irregular morphologies like the scala tympani, in which the cochlear electrodes are commonly implanted. This study successfully developed human-scale scala tympani-like hydrogel structures that support viable cell adhesion and can accommodate cochlear implants for future device testing

    MexEF-OprN Efflux Pump Exports the Pseudomonas Quinolone Signal (PQS) Precursor HHQ (4-hydroxy-2-heptylquinoline)

    Get PDF
    Bacterial cells have evolved the capacity to communicate between each other via small diffusible chemical signals termed autoinducers. Pseudomonas aeruginosa is an opportunistic pathogen involved, among others, in cystic fibrosis complications. Virulence of P. aeruginosa relies on its ability to produce a number of autoinducers, including 4-hydroxy-2-alkylquinolines (HAQ). In a cell density-dependent manner, accumulated signals induce the expression of multiple targets, especially virulence factors. This phenomenon, called quorum sensing, promotes bacterial capacity to cause disease. Furthermore, P. aeruginosa possesses many multidrug efflux pumps conferring adaptive resistance to antibiotics. Activity of some of these efflux pumps also influences quorum sensing. The present study demonstrates that the MexEF-OprN efflux pump modulates quorum sensing through secretion of a signalling molecule belonging to the HAQ family. Moreover, activation of MexEF-OprN reduces virulence factor expression and swarming motility. Since MexEF-OprN can be activated in infected hosts even in the absence of antibiotic selective pressure, it could promote establishment of chronic infections in the lungs of people suffering from cystic fibrosis, thus diminishing the immune response to virulence factors. Therapeutic drugs that affect multidrug efflux pumps and HAQ-mediated quorum sensing would be valuable tools to shut down bacterial virulence

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Creating and curating an archive: Bury St Edmunds and its Anglo-Saxon past

    Get PDF
    This contribution explores the mechanisms by which the Benedictine foundation of Bury St Edmunds sought to legitimise and preserve their spurious pre-Conquest privileges and holdings throughout the Middle Ages. The archive is extraordinary in terms of the large number of surviving registers and cartularies which contain copies of Anglo-Saxon charters, many of which are wholly or partly in Old English. The essay charts the changing use to which these ancient documents were put in response to threats to the foundation's continued enjoyment of its liberties. The focus throughout the essay is to demonstrate how pragmatic considerations at every stage affects the development of the archive and the ways in which these linguistically challenging texts were presented, re-presented, and represented during the Abbey’s history

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    Challenges and solutions for fabrication of three-dimensional cocultures of neural cell-loaded biomimetic constructs

    Full text link
    Fabrication of three-dimensional (3D) constructs to model body tissues and organs can contribute to research into tissue development and models for studying disease, as well as supporting preclinical drug screening in vitro. Furthermore, 3D constructs can also be used for diagnosis and therapy of disease conditions via lab on a chip and microarrays for diagnosis and engineered products for tissue repair, replacement, and regeneration. While cell culture approaches for studying tissue development and disease in two dimensions are long-established, the translation of this knowledge into 3D environments remains a fertile field of research. In this Tutorial, we specifically focus on the application of biosynthetic hydrogels for neural cell encapsulation. The Tutorial briefly covers background on using biosynthetic hydrogels for cell encapsulation, as well as common fabrication techniques. The Methods section focuses on the hydrogel design and characterization, highlighting key elements and tips for more effective approaches. Coencapsulation of different cell types, and the challenges associated with different growth and maintenance requirements, is the main focus of this Tutorial. Much care is needed to blend different cell types, and this Tutorial provides tips and insights that have proven successful for 3D coculture in biosynthetic hydrogels

    Immunoisolating semi-permeable membranes for cell encapsulation: Focus on hydrogels

    Full text link
    Cell-based medicine has recently emerged as a promising cure for patients suffering from various diseases anddisorders that cannot be cured/treated using technologies currently available. Encapsulation within semipermeablemembranes offers transplanted cell protection from the surrounding host environment to achievesuccessful therapeutic function following in vivo implantation. Apart from the immunoisolation requirements,the encapsulating material must allow for cell survival and differentiation while maintaining its physicomechanicalproperties throughout the required implantation period. Here we review the progress made in thedevelopment of cell encapsulation technologies from the mass transport side, highlighting the essentialrequirements of materials comprising immunoisolating membranes. The review will focus on hydrogels, themost common polymers used in cell encapsulation, and discuss the advantages of these materials and thechallenges faced in the modification of their immunoisolating and permeability characteristics in order tooptimize their function

    Tailoring 3D hydrogel systems for neuronal encapsulation in living electrodes

    Full text link
    State-of-the-art neurorprostheses rely on stiff metallic electrodes to communicate with neural tissues. It was envisioned that a soft, organic electrode coating embedded with functional neural cells will enhance electrode-tissue integration. To enable such a device, it is necessary to produce a cell scaffold with mechanical properties matched to native neural tissue. A degradable poly(vinyl alcohol) (PVA) hydrogel was tailored to have a range of compressive moduli through variation in macromer composition and initiator amount. A regression model was used to predict the amount of initiator required for hydrogel polymerization with nominal macromer content ranging between 5 and 20 wt %. Hydrogels at 5 and 10 wt % were reliably formed but 15 wt % and above were not able to be fabricated due to the light attenuation properties of the initiator ruthenium at increased concentration. Compressive modulus of hydrogels decreased upon incorporation of biomolecules (sericin and gelatin), however, the bulk stiffness spanned the range required to match neural tissue properties (0.04–20kPa). Neuroglia cells, such as Schwann cells survived and grew within the scaffold. The significant finding of this work is that the PVA-tyramine system can be tuned to provide a soft degradable scaffold for neural tissue regeneration while presenting bioactive molecules for cellular expansion. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 273–287
    corecore