954 research outputs found

    Waking up the gut in critically ill patients

    Get PDF
    Multiorgan failure frequently develops in critically ill patients. While therapeutic efforts in such patients are often focused on the lungs, on the cardiovascular system as well as on the kidneys, it is important to also consider the functional alterations in gut motility and hormone secretion. Given the central regulatory functions of many gut hormones, such as glucagon-like peptide 1, glucagon-like peptide 2, ghrelin and others, exogenous supplementation of some of these factors may be beneficial under conditions of critical illness. From a pragmatic point of view, the most feasible way towards a restoration of gut hormone secretion in critically ill patients is to provide enteral nutritional supply as soon as possible

    Tibial tubercle osteotomy for access during revision knee arthroplasty: Ethibond suture repair technique

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tibial Tubercle Osteotomy has shown much promise in revision total knee replacement. Methods of repair previously described include screw and wire fixation. Both methods have significant complications.</p> <p>Methods</p> <p>This article describes suture fixation of the osteotomy using Ethibond sutures placed medially with a lateral periosteal hinge.</p> <p>Results</p> <p>This method of fixation relies upon an adequate osteotomy segment including the entire insertion of the patella tendon. The lateral periosteal hinge is maintained and adds to the stability of the construct. A minimum of two number 5 Ethibond sutures are passed medially through drill holes to secure the osteotomy segment. No post-operative immobilisation is required.</p> <p>Conclusion</p> <p>Ethibond sutures provide adequate fixation of the tibial tubercle osteotomy segment in revision knee arthroplasty with reduced risk of complication as compared to conventional fixation methods.</p

    Quasars: the characteristic spectrum and the induced radiative heating

    Full text link
    Using information on the cosmic X-ray background and the cumulative light of active galactic nuclei at infrared wavelengths, the estimated local mass density of galactic massive black holes (MBHs) and published AGN composite spectra in the optical, UV and X-ray, we compute the characteristic angular-integrated, broad-band spectral energy distribution of the average quasar in the universe. We demonstrate that the radiation from such sources can photoionize and Compton heat the plasma surrounding them up to an equilibrium Compton temperature (Tc) of 2x10^7 K. It is shown that circumnuclear obscuration cannot significantly affect the net gas Compton heating and cooling rates, so that the above Tc value is approximately characteristic of both obscured and unobscured quasars. This temperature is above typical gas temperatures in elliptical galaxies and just above the virial temperatures of giant ellipticals. The general results of this work can be used for accurate calculations of the feedback effect of MBHs on both their immediate environs and the more distant interstellar medium of their host galaxies.Comment: 15 pages, 5 figures. Revised version accepted for publication in MNRA

    Apolipoprotein E and Alzheimer’s disease: The influence of apolipoprotein E on amyloid- and other amyloidogenic proteins

    Get PDF

    Socio-Economic Instability and the Scaling of Energy Use with Population Size

    Get PDF
    The size of the human population is relevant to the development of a sustainable world, yet the forces setting growth or declines in the human population are poorly understood. Generally, population growth rates depend on whether new individuals compete for the same energy (leading to Malthusian or density-dependent growth) or help to generate new energy (leading to exponential and super-exponential growth). It has been hypothesized that exponential and super-exponential growth in humans has resulted from carrying capacity, which is in part determined by energy availability, keeping pace with or exceeding the rate of population growth. We evaluated the relationship between energy use and population size for countries with long records of both and the world as a whole to assess whether energy yields are consistent with the idea of an increasing carrying capacity. We find that on average energy use has indeed kept pace with population size over long time periods. We also show, however, that the energy-population scaling exponent plummets during, and its temporal variability increases preceding, periods of social, political, technological, and environmental change. We suggest that efforts to increase the reliability of future energy yields may be essential for stabilizing both population growth and the global socio-economic system

    Influence of through-flow on linear pattern formation properties in binary mixture convection

    Full text link
    We investigate how a horizontal plane Poiseuille shear flow changes linear convection properties in binary fluid layers heated from below. The full linear field equations are solved with a shooting method for realistic top and bottom boundary conditions. Through-flow induced changes of the bifurcation thresholds (stability boundaries) for different types of convective solutions are deter- mined in the control parameter space spanned by Rayleigh number, Soret coupling (positive as well as negative), and through-flow Reynolds number. We elucidate the through-flow induced lifting of the Hopf symmetry degeneracy of left and right traveling waves in mixtures with negative Soret coupling. Finally we determine with a saddle point analysis of the complex dispersion relation of the field equations over the complex wave number plane the borders between absolute and convective instabilities for different types of perturbations in comparison with the appropriate Ginzburg-Landau amplitude equation approximation. PACS:47.20.-k,47.20.Bp, 47.15.-x,47.54.+rComment: 19 pages, 15 Postscript figure

    A Novel Model of Mixed Vascular Dementia Incorporating Hypertension in a Rat Model of Alzheimer's Disease.

    Get PDF
    Alzheimer's disease (AD) and mixed dementia (MxD) comprise the majority of dementia cases in the growing global aging population. MxD describes the coexistence of AD pathology with vascular pathology, including cerebral small vessel disease (SVD). Cardiovascular disease increases risk for AD and MxD, but mechanistic synergisms between the coexisting pathologies affecting dementia risk, progression and the ultimate clinical manifestations remain elusive. To explore the additive or synergistic interactions between AD and chronic hypertension, we developed a rat model of MxD, produced by breeding APPswe/PS1ΔE9 transgenes into the stroke-prone spontaneously hypertensive rat (SHRSP) background, resulting in the SHRSP/FAD model and three control groups (FAD, SHRSP and non-hypertensive WKY rats, n = 8-11, both sexes, 16-18 months of age). After behavioral testing, rats were euthanized, and tissue assessed for vascular, neuroinflammatory and AD pathology. Hypertension was preserved in the SHRSP/FAD cross. Results showed that SHRSP increased FAD-dependent neuroinflammation (microglia and astrocytes) and tau pathology, but plaque pathology changes were subtle, including fewer plaques with compact cores and slightly reduced plaque burden. Evidence for vascular pathology included a change in the distribution of astrocytic end-foot protein aquaporin-4, normally distributed in microvessels, but in SHRSP/FAD rats largely dissociated from vessels, appearing disorganized or redistributed into neuropil. Other evidence of SVD-like pathology included increased collagen IV staining in cerebral vessels and PECAM1 levels. We identified a plasma biomarker in SHRSP/FAD rats that was the only group to show increased Aqp-4 in plasma exosomes. Evidence of neuron damage in SHRSP/FAD rats included increased caspase-cleaved actin, loss of myelin and reduced calbindin staining in neurons. Further, there were mitochondrial deficits specific to SHRSP/FAD, notably the loss of complex II, accompanying FAD-dependent loss of mitochondrial complex I. Cognitive deficits exhibited by FAD rats were not exacerbated by the introduction of the SHRSP phenotype, nor was the hyperactivity phenotype associated with SHRSP altered by the FAD transgene. This novel rat model of MxD, encompassing an amyloidogenic transgene with a hypertensive phenotype, exhibits several features associated with human vascular or "mixed" dementia and may be a useful tool in delineating the pathophysiology of MxD and development of therapeutics

    A sensitive flow cytometric methodology for studying the binding of L. chagasi to canine peritoneal macrophages

    Get PDF
    BACKGROUND: The Leishmania promastigote-macrophage interaction occurs through the association of multiple receptors on the biological membrane surfaces. The success of the parasite infection is dramatically dependent on this early interaction in the vertebrate host, which permits or not the development of the disease. In this study we propose a novel methodology using flow cytometry to study this interaction, and compare it with a previously described "in vitro" binding assay. METHODS: To study parasite-macrophage interaction, peritoneal macrophages were obtained from 4 dogs and adjusted to 3 × 10(6 )cells/mL. Leishmania (Leishmania) chagasi parasites (stationary-phase) were adjusted to 5 × 10(7 )cells/mL. The interaction between CFSE-stained Leishmania chagasi and canine peritoneal macrophages was performed in polypropylene tubes to avoid macrophage adhesion. We carried out assays in the presence or absence of normal serum or in the presence of a final concentration of 5% of C5 deficient (serum from AKR/J mice) mouse serum. Then, the number of infected macrophages was counted in an optical microscope, as well as by flow citometry. Macrophages obtained were stained with anti-CR3 (CD11b/CD18) antibodies and analyzed by flow citometry. RESULTS: Our results have shown that the interaction between Leishmania and macrophages can be measured by flow cytometry using the fluorescent dye CFSE to identify the Leishmania, and measuring simultaneously the expression of an important integrin involved in this interaction: the CD11b/CD18 (CR3 or Mac-1) β2 integrin. CONCLUSION: Flow cytometry offers rapid, reliable and sensitive measurements of single cell interactions with Leishmania in unstained or phenotypically defined cell populations following staining with one or more fluorochromes

    Disruption of arterial perivascular drainage of amyloid-β from the brains of mice expressing the human APOE ε4 allele

    Get PDF
    Failure of elimination of amyloid-β (Aβ) from the brain and vasculature appears to be a key factor in the etiology of sporadic Alzheimer’s disease (AD) and cerebral amyloid angiopathy (CAA). In addition to age, possession of an apolipoprotein E (APOE) ε4 allele is a strong risk factor for the development of sporadic AD. The present study tested the hypothesis that possession of the APOE ε4 allele is associated with disruption of perivascular drainage of Aβ from the brain and with changes in cerebrovascular basement membrane protein levels. Targeted replacement (TR) mice expressing the human APOE3 (TRE3) or APOE4 (TRE4) genes and wildtype mice received intracerebral injections of human Aβ40. Aβ40 aggregated in peri-arterial drainage pathways in TRE4 mice, but not in TRE3 or wildtype mice. The number of Aβ deposits was significantly higher in the hippocampi of TRE4 mice than in the TRE3 mice, at both 3- and 16-months of age, suggesting that clearance of Aβ was disrupted in the brains of TRE4 mice. Immunocytochemical and Western blot analysis of vascular basement membrane proteins demonstrated significantly raised levels of collagen IV in 3-month-old TRE4 mice compared with TRE3 and wild type mice. In 16-month-old mice, collagen IV and laminin levels were unchanged between wild type and TRE3 mice, but were lower in TRE4 mice. The results of this study suggest that APOE4 may increase the risk for AD through disruption and impedance of perivascular drainage of soluble Aβ from the brain. This effect may be mediated, in part, by changes in age-related expression of basement membrane proteins in the cerebral vasculature
    corecore