228 research outputs found
EVAPORATION OF QUARK DROPS DURING THE COSMOLOGICAL Q-H TRANSITION
We have carried out a study of the hydrodynamics of disconnected quark
regions during the final stages of the cosmological quark-hadron transition. A
set of relativistic Lagrangian equations is presented for following the
evaporation of a single quark drop and results from the numerical solution of
this are discussed. A self-similar solution is shown to exist and the formation
of baryon number density inhomogeneities at the end of the drop contraction is
discussed.Comment: 12 pages Phys. Rev. format, uuencoded postscript file including 12
figure
Holstein polarons in a strong electric field: delocalized and stretched states
The coherent dynamics of a Holstein polaron in strong electric fields is
considered under different regimes. Using analytical and numerical analysis, we
show that even for small hopping constant and weak electron-phonon interaction,
the original discrete Wannier-Stark (WS) ladder electronic states are each
replaced by a semi-continuous band if a resonance condition is satisfied
between the phonon frequency and the ladder spacing. In this regime, the
original localized WS states can become {\em delocalized}, yielding both
`tunneling' and `stretched' polarons. The transport properties of such a system
would exhibit a modulation of the phonon replicas in typical tunneling
experiments. The modulation will reflect the complex spectra with
nearly-fractal structure of the semi-continuous band. In the off-resonance
regime, the WS ladder is strongly deformed, although the states are still
localized to a degree which depends on the detuning: Both the spacing between
the levels in the deformed ladder and the localization length of the resulting
eigenfunctions can be adjusted by the applied electric field. We also discuss
the regime beyond small hopping constant and weak coupling, and find an
interesting mapping to that limit via the Lang-Firsov transformation, which
allows one to extend the region of validity of the analysis.Comment: 10 pages, 13 figures, submitted to PR
Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation
The current status of electric dipole moments of diamagnetic atoms which
involves the synergy between atomic experiments and three different theoretical
areas -- particle, nuclear and atomic is reviewed. Various models of particle
physics that predict CP violation, which is necessary for the existence of such
electric dipole moments, are presented. These include the standard model of
particle physics and various extensions of it. Effective hadron level combined
charge conjugation (C) and parity (P) symmetry violating interactions are
derived taking into consideration different ways in which a nucleon interacts
with other nucleons as well as with electrons. Nuclear structure calculations
of the CP-odd nuclear Schiff moment are discussed using the shell model and
other theoretical approaches. Results of the calculations of atomic electric
dipole moments due to the interaction of the nuclear Schiff moment with the
electrons and the P and time-reversal (T) symmetry violating
tensor-pseudotensor electron-nucleus are elucidated using different
relativistic many-body theories. The principles of the measurement of the
electric dipole moments of diamagnetic atoms are outlined. Upper limits for the
nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained
combining the results of atomic experiments and relativistic many-body
theories. The coefficients for the different sources of CP violation have been
estimated at the elementary particle level for all the diamagnetic atoms of
current experimental interest and their implications for physics beyond the
standard model is discussed. Possible improvements of the current results of
the measurements as well as quantum chromodynamics, nuclear and atomic
calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for
EPJ
Monopolium: the key to monopoles
Dirac showed that the existence of one magnetic pole in the universe could offer an explanation for the discrete nature of the electric charge. Magnetic poles appear naturally in most Grand Unified Theories. Their discovery would be of greatest importance for particle physics and cosmology. The intense experimental search carried thus far has not met with success. Moreover, if the monopoles are very massive their production is outside the range of present day facilities. A way out of this impasse would be if the monopoles bind to form monopolium, a monopole- antimonopole bound state, which is so strongly bound, that it has a relatively small mass. Under these circumstances it could be produced with present day facilities and the existence of monopoles could be indirectly proven. We study the feasibility of detecting monopolium in present and future accelerators
Dynamic Evolution of a Quasi-Spherical General Polytropic Magnetofluid with Self-Gravity
In various astrophysical contexts, we analyze self-similar behaviours of
magnetohydrodynamic (MHD) evolution of a quasi-spherical polytropic magnetized
gas under self-gravity with the specific entropy conserved along streamlines.
In particular, this MHD model analysis frees the scaling parameter in the
conventional polytropic self-similar transformation from the constraint of
with being the polytropic index and therefore
substantially generalizes earlier analysis results on polytropic gas dynamics
that has a constant specific entropy everywhere in space at all time. On the
basis of the self-similar nonlinear MHD ordinary differential equations, we
examine behaviours of the magnetosonic critical curves, the MHD shock
conditions, and various asymptotic solutions. We then construct global
semi-complete self-similar MHD solutions using a combination of analytical and
numerical means and indicate plausible astrophysical applications of these
magnetized flow solutions with or without MHD shocks.Comment: 21 pages, 7 figures, accepted for publication in APS
Tracking Chromosome Evolution in Southern African Gerbils Using Flow-Sorted Chromosome Paints
<i>Desmodillus</i> and <i>Gerbilliscus</i> (formerly <i>Tatera</i>) comprise a monophyletic group of gerbils (subfamily Gerbillinae) which last shared an ancestor approximately 8 million years ago; diploid chromosome number variation among the species ranges from 2n = 36 to 2n = 50. In an attempt to shed more light on chromosome evolution and speciation in these rodents, we compared the karyotypes of 7 species, representing 3 genera, based on homology data revealed by chromosome painting with probes derived from flow-sorted chromosomes of the hairy footed gerbil, <i>Gerbillurus paeba</i> (2n = 36). The fluorescent in situ hybridization data revealed remarkable genome conservation: these species share a high proportion of conserved chromosomes, and differences are due to 10 Robertsonian (Rb) rearrangements (3 autapomorphies, 3 synapomorphies and 4 hemiplasies/homoplasies). Our data suggest that chromosome evolution in <i>Desmodillus </i>occurred at a rate of ∼1.25 rearrangements per million years (Myr), and that the rate among <i>Gerbilliscus</i> over a time period spanning 8 Myr is also ∼1.25 rearrangements/Myr. The recently diverged <i>Gerbillurus (G. tytonis </i>and<i> G. paeba)</i> share an identical karyotype, while <i>Gerbilliscus kempi, G. afra</i> and <i>G. leucogaster</i> differ by 6 Rb rearrangements (a rate of ∼1 rearrangement/Myr). Thus, our data suggests a very slow rate of chromosomal evolution in Southern African gerbils.</jats:p
Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector
The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements
A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector
A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance
A cellular chemical probe targeting the chromodomains of Polycomb repressive complex 1
We report the design and characterization of UNC3866, a potent antagonist of the methyllysine (Kme) reading function of the Polycomb CBX and CDY families of chromodomains. Polycomb CBX proteins regulate gene expression by targeting Polycomb repressive complex 1 (PRC1) to sites of H3K27me3 via their chromodomains. UNC3866 binds the chromodomains of CBX4 and CBX7 most potently, with a K d of â ∼1/4100 nM for each, and is 6-to 18-fold selective as compared to seven other CBX and CDY chromodomains while being highly selective over >250 other protein targets. X-ray crystallography revealed that UNC3866's interactions with the CBX chromodomains closely mimic those of the methylated H3 tail. UNC4195, a biotinylated derivative of UNC3866, was used to demonstrate that UNC3866 engages intact PRC1 and that EED incorporation into PRC1 is isoform dependent in PC3 prostate cancer cells. Finally, UNC3866 inhibits PC3 cell proliferation, consistent with the known ability of CBX7 overexpression to confer a growth advantage, whereas UNC4219, a methylated negative control compound, has negligible effects
Erratum: Addendum: A cellular chemical probe targeting the chromodomains of Polycomb repressive complex 1 (Nature chemical biology (2016) 12 3 (180-187))
[No abstract available
- …
