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Abstract

Dirac showed that the existence of one magnetic pole in the universe could offer an
explanation for the discrete nature of the electric charge. Magnetic poles appear naturally
in most Grand Unified Theories. Their discovery would be of greatest importance for
particle physics and cosmology. The intense experimental search carried thus far has not
met with success. Moreover, if the monopoles are very massive their production is outside
the range of present day facilities. A way out of this impasse would be if the monopoles
bind to form monopolium, a monopole- antimonopole bound state, which is so strongly
bound, that it has a relatively small mass. Under these circumstances it could be produced
with present day facilities and the existence of monopoles could be indirectly proven. We
study the feasibility of detecting monopolium in present and future accelerators.
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1 Introduction

The theoretical justification for the existence of classical magnetic poles, hereafter called
monopoles, is that they add symmetry to Maxwell’s equations and explain charge quanti-
zation [1, 2] . Dirac formulated his theory of monopoles considering them basically point
like particles and quantum mechanical consistency conditions lead to the so called Dirac
Quantization Condition (DQC),

e g =
N

2
, N = 1,2,... , (1)

where e is the electron charge, g the monopole magnetic charge and we will use natural
units h̄ = c = 1. In this theory the monopole mass, m, is a parameter, limited only by
classical reasonings to be m > 2 GeV [3]. In non-Abelian gauge theories monopoles arise
as topologically stable solutions through spontaneous breaking via the Kibble mechanism
[4]. They are allowed by most Grand Unified Theory (GUT) models, have finite size
and come out extremely massive m > 1016 GeV. There are also models based on other
mechanisms with masses between those two extremes [3, 5, 6]. All these monopoles
satisfy Dirac’s quantization condition as a consequence of the monopolar structure and
the semiclassical quantization [7].

All the attempts to discover or produce monopoles have met with failure. [3, 5, 7,
8, 9, 10]. This lack of experimental confirmation has led many physicist to abandon the
hope in their existence. A way out of this impasse is the old idea of Dirac [1, 11], namely,
monopoles are not seen freely because they are confined by their strong magnetic forces
forming a bound state called monopolium [12, 13].

Several cosmological scenarios compatible with all cosmological requirements[14, 15,
16, 17] have been proposed [12, 18, 19, 20] with the aim of making the existence of mo-
nopolium compatible with the observation of ultrahigh-energy cosmic rays (UHECRS)
[21, 22]. From these cosmological scenarios we have learned that the study of the mo-
nopolium annihilation process provides us with information regarding the existence of
monopoles, even if they are difficult to detect or to produce in a free asymptotic state.
This phenomenon is not a novel feature of physics. Quark-gluon confinement describes
the strong limit of Quantum Chromodynamics, the theory of the hadronic interactions,
and their existence is proven by the detection of jets, showers of conventional hadrons.
There is however a main difference between the two scenarios. In the monopolium case,
the elementary constituents may be separated asymptotically, when they are orbiting far
from each other, if the energy provided to the system is high enough, while in the quark-
gluon case this is not possible. In practice, however, there is no big difference, since due
to the very high binding energies of monopolium, asymptotic monopoles might only be
found, for short periods of time, in the center of galaxies, or clusters of galaxies, not in
our laboratories.

In the present work we aim at determining the existence and the dynamics of monopoles
in the laboratory. The philosophy behind the present calculation is that the standard
model allows for the existence of monopoles which are spin 0 bosons. Therefore, given
the appropriate kinematics we should be able to produce them. However, past experience
has taught us that this is not feasible because, most probably, their mass is very large
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and their production is outside our present experimental capabilities. Our proposal here,
is that due to the large coupling between monopole and anti-monopole the two bind to
form a low mass monopolium state. This state can be produce as an intermediate virtual
state and we study its subsequent decays. Thus, in an indirect way monopole physics can
be revealed.

2 Monopolium detection

We proceed to discuss signatures of monopolium, the monopole-antimonopole bound
state, when produced in e+e− annihilation1. We use to describe the interaction the low
energy effective theory of Ginzburg and Schiller [23]. This theory is based on the stan-
dard electroweak theory and in order to couple the monopoles to the photon and weak
bosons one considers that m >> mZ0

, mZ0
being the mass of the Z0 boson, and that

the monopole interacts with the fundamental fields of the SU(2) ⊗ U(1) theory before
symmetry breaking, i.e., with the isoscalar field B, in the conventional notation of the
standard model [25]. In this way the photon, γ, and the weak boson, Z0, have the same
coupling except for an additional tan θW , where θW is the Weinberg angle, for the lat-
ter. The effective description is based on the one loop approximation of the fundamental
theory and therefore the effective coupling is proportional to geff ∼ ω

m
g, where ω is an

energy scale which is below the monopole production threshold, thus rendering the theory
perturbative. The dynamical scheme proposed by Ginzburg and Schiller leads to effective
couplings in a vector like theory between the monopole and the photon [23], given by

gγ
eff = C(Jm) g

ω

m
= C(Jm)

ωN

2 em
(2)

with C(Jm) ∼ 1, ω the photon energy, m the monopole mass and N the monopole charge.
The effective interaction between the monopole and the Z0 becomes

gZ
eff = tan(θW ) gγ

eff (3)

where θW is the Weinberg angle and naturally here ω refers to the Z0 energy. We have used
the Dirac quantization condition Eq.(1) to express the coupling in terms of the electron
charge.

We study the process

e+e− → A→ M + A′

→֒ B + C, (4)

shown in Fig. 1, where A,A′, B, C are γ’s or Z0’s, in all allowed combinations and M
represents a monopolium state. We consider that the particle A’ carries away the spin of
the photon and therefore M represents the lowest scalar monopolium state. The coupling
arises as a consequence of the generalization of scalar electrodynamics [24].

1The description in terms of quark-antiquark annihilation is straightforward although complicated by
the partonic description of the real experimental probes which are hadrons.
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Figure 1: Diagrammatic description of the reactions studied.

The standard expression for the cross section in these cases results in

σ =
(

π

Ee

)2

G
4M2 Γeeγ ΓBC

(P 2 −M2)2 +M2 Γ2
M

(5)

Here M stands for the monopolium mass, P for the monopolium four-momentum and G
is defined by

G =
2 JM + 1

(2 se + 1)
√

(2 sB + 1) (2 sC + 1)
,

where JM indicates the total angular momentum of monopolium. We recall that the so
called unitarity bound, restricts the validity of the Ginzburg-Schiller approximation to
M < m/6 [7]. The interesting physical situation occurs when M ≪ m and consequently,
from (2) and the fact that ω ∼ M , one gets geff ∼ g(M/m) ≪ 1, which grants validity
to the perturbative approach.

We enter now the computation of the widths Γ. Taking into account that

|Meeγ|2 =

∣

∣

∣

∣

∣

< e+ e− | 1

(q2 −m2
A)

|M,A′ >

∣

∣

∣

∣

∣

2

= 4 π α g2
A g

′ 2
A

1

(q2 −m2
A)

2 |ψM (0)|2 ,

where mA is the mass of the A particle in Fig. 1. Here q = (2Ee,~0). One obtains,

Γeeγ = 4α2 g2
A g

2
A′

E2
e

(4E2
e −m2

A)
2 |ψM (0)|2 . (6)

Note that the monopolium mass could be small and therefore we have to keep the mass
term in the denominator.

We now proceed to calculate

ΓBC = 2 π |MBC |2 ρ(EBC)

Using the standard result [26] we obtain

ΓBC =
8 π g2

B g
2
C

m
|ψM (0)|2 , (7)

3



where the approximation m ≫ mB, mC has been used. Here mB and mC represent
respectively the masses of the B and C particles of Fig. 1.

The cross section, generalized to include the propagation of an unstable particle of
width ΓA (for us A = Z0), becomes

σ =
2G

(16)4 π5

(tan θW )2ζ0

α3

M2

m10
|ψM(0)|4

E2
A′E2

B E
2
C (2Ee)

2

[(4E2
e −m2

A)2 +m2
A Γ2

A] [(2Ee −EA′)2 − E2
A′ −M2)2 +M2 Γ2

M ]
(8)

where ζ0 indicates the number of Z0’s present among particles A, A′, B and C and we
have used energy-momentum conservation at the vertex.

In order to go ahead with the calculation, one has to obtain the wave function corre-
sponding to monopolium. This is done and analyzed in the next sections.

3 Monopolium Potential

Our calculation of monopolium reduces to a quantum mechanical bound state calculation
which provides us with its mass and its wave function in the relative frame. We will use a
static non relativistic approximation and therefore our first step is to define the potential
that binds the poles to form monopolium.

We restrict our calculation to the lowest charge monopole, i.e. N = 1 in the Dirac
condition Eq.(1). We regard the monopole as possessing some spatial extension in line with
the arguments of Schiff and Goebel [27, 28]. This assumption makes the potential energy
of the monopole-antimonopole interaction non-singular when the relative separation goes
to zero. Mathematically we describe this feature by means of an exponential cut-off in
the interaction potential,

V (r) = −g2

(

1 − exp (−µ r)
r

)

. (9)

We fix the cut-off parameter µ by physical arguments. Eq.(9) has the following prop-
erties,

i) r → ∞
V (r) → −g

2

r
(10)

ii) r → 0

V (r) → −g2 µ+ . . . (11)

When the monopole-antimonopole are closest to each other the distance between the
corresponding centers O and O′ is rOO′ ∼ 2 rm, where rm is the pole radius. For our
estimates rm ∼ 4 rclassical seems reasonable since this choice will allow the monopolium
bound state to have very small mass for strong binding. Then
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Figure 2: The figure on the left shows the Coulomb and the Coulomb with exponential
cut-off potentials. The figure on the right shows energy levels of the Coulomb potential
used as energy levels of the cut-off potential. Note that the lowest energy states of the
cut-off potential correspond to excited states of the Coulomb potential.

µ = 2
m

g2
. (12)

Consequently, the effective potential finally becomes

V (r) = −g2
1 − exp

(

−2 r
rclassical

)

r
. (13)

Note that with our choice, for r → 0, V (r) → −2m. Thus, the mass of the bound state
becomes the energy over the minimum

M = 2m+ Ebinding. (14)

Summarizing, our analysis shows that the cut-off potential is quite close to the Coulomb
potential as long as the monopole radius, rm is greater than the classical monopole radius
rclassical. Thus, we shall use the ”magnetic” Coulomb potential (Fig. 2) as our interac-
tion in what follows. However, it is important to note, as will be shown next, that the
lowest energy states of the cut-off potential correspond to excited states of the magnetic
Coulomb potential (Fig. 2.).

We use a non-relativistic approximation whose validity we will shortly discuss. Solving
the Schrödinger equation for monopolium we obtain its binding energy, and therefore the
mass of the system is given by [29]

M = 2m−
(

1

8α

)2 m

n2
> 0. (15)

where α = e2 = 1/137 and n is the principal quantum number. We see that we can reach
zero mass for n ∼ 12 and therefore for n > 17 the formula is well defined and describes
all values of M
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Figure 3: Mass of the monopolium as a function of the size parameter.The unitarity
bound corresponding to ρ ∼ 0.41 is shown.

0 ≤M ≤ 2m

.
The monopolium radius is given by

rM

rclassical
= 48α2n2. (16)

Now we introduce the size parameter ρ = rM/rclassical.
By substituting n2 from Eq.(16) into Eq.(15), we obtain an equation for the monopo-

lium mass as a function of its size, namely

M = m

(

2 − 3

4ρ

)

, (17)

which is plotted in Fig. 3. Although for low values of ρ our approximation becomes worse,
we expect, that the soft behavior of the wave function at the origin, allows for order of
magnitude estimates. This formula is extremely important in our development because
it transmutates principal quantum numbers of the Coulomb potential into mass scales
which are crucial to substantiate our scenario.

The perturbative expansion of Ginzburg and Schiller used in the calculation of the
production process limits, due to unitariry, the maximum value of the ratio of M

m
< 1/6

[7]. We incorporate this external additional requirement to the bound state calculation,
which is free from it, by showing the bound in all relevant figures.

Before we continue, a discussion on the validity of the non-relativistic approximation is
necessary. Let us therefore analyze how relativistic corrections will affect our calculation.
As the monopoles are spin 0 bosons one may describe the system by a Schrödinger type
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Figure 4: Shown are the non relativistic β (solid), the relativistic bosonic βrel (dashed),
the first order correction βrel (dot-dashed) and the ratio of an upper bound to the order
β4 potential term to the binding energy to order β4 with correct kinematics (dotted). The
unitarity bound is also shown.

equation and the first corrections to it do not start at order β2 but at order β4 (apart
from merely the kinetic terms) [30]. These additional terms to order β6 are,

− ∆4

8m4
; − ∆6

16m6
;

g2

32m5
[∆2, [∆2,

1

r
]]. (18)

They can be treated as perturbations to the Schrödinger equation. In the appendix we
give detailed account of the calculation of these corrections.

We show in Fig. 4 that the correction to the potential energy can be neglected safely,
for an order of magnitude estimate, if the kinetic terms are fully taken into account.
Moreover, we show that the minimal relativistic correction, consisting in the simplest
approximation to the Klein–Gordon equation, namely in incorporating the mass [30],
leads to a velocity

β
(1)
rel =

β

1 + β2

2

, (19)

which is almost indistinguishable from the more complete given by Eq.(34).
Furthermore, since our potential is cut off for small values of r we expect a slow down

of the particles with respect to the conventional Coulomb potential and therefore the
non-relativistic treatment is more accurate than in the pure Coulomb case. Moreover, the
calculation for the wave function at the origin is less sensitive to the short range behavior
of the potential, than the velocity which depends on the slope of the wave function.
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4 Cross section estimates

We proceed to use the formalism just developed to describe the production and decay
of monopolium. The analysis that follows is physically appealing because the mass of
monopolium may be chosen small, much smaller than the monopole mass, thus detection
can occur at relatively low energies. Monopolium production is accompanied by radiation,
which is also described by the formalism. Furthermore the calculation is easy to perform
and physically understandable.

It seems therefore safe to go ahead to calculate the monopolium decay probability as
a function of ρ. The range of values of ρ : 3/8 < ρ <∞. Moreover,

n =
1

4α

√

ρ

3

and therefore, given a value of ρ, one can determine n and this fixes |ψ(0)|2, which is what
one needs for computing the decay probability. In summary, the calculation seems to be
feasible in terms of only one mass scale, the mass of the monopole, m, and one parameter,
ρ.

Let us consider the case when monopolium is produced in its ground state, its wave
function will have ℓ = 0. Consequently [29]

ψn,0,0 =
1

a3/2
Nn,0 Fn,0

(

2 r

n a

)

Y 0
0 (Ω) (20)

with

a =
1

me2
; Nn,0 =

2

n2

√

√

√

√

(n− 1)!

(n!)3

and

Fn,0(x) = e−1/2 x L1
n−1(x) ; L1

n−1(x) =
n−1
∑

s=0

(−1)s (n!)2

(n− s− 1)! (s+ 1)! s!
xs

We need |ψn,0,0(0)|. Then, taking into account that

lim
x→0

L1
n−1(x) = nn! ; lim

x→0
Fn,0(x) = nn!

one has

|ψn,0,0(0)| =
1

a3/2

2

n

1√
n

(21)

The reduced mass of the monopolium system is m/2 and the Dirac condition Eq.(1)
can be written as

g2 e2 =
1

4
⇒ αg αe =

1

4
one gets

|ψn,0,0(0)| =
1

4

(

m

2αe n

)3/2

(22)
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Finally one can write the wave function in terms of the variable ρ to obtain

|ψn,0,0(0)| =
1

4

(

2
√

3m√
ρ

)3/2

(23)

This is the main ingredient to be included in the expression for the cross section that was
computed before.

For spin zero monopoles and being particularly interested in n large and ℓ = 0 , one
has G ∼ 1/4. Replacing the value of the wave function given in (23), and using the
relation between M and ρ the cross section, Eq.(8), becomes

σ =
1

46

27

32 π5

(tan θW )2NZ0

α3

M2

m4

(

4

3

(

2 − M

m

))3

E2
A′ E2

B E
2
C (2Ee)

2

[(4E2
e −m2

A)2 + (m2
AΓ2

A]
[

((2Ee −EA′)2 − E2
A′ −M2)

2
+M2Γ2

M

] . (24)

We proceed to describe the case when A is a photon propagator and the external
particles A′, B and C are outgoing photons. Clearly A = Z0, A

′ = B = γ, C = γ also
contributes to the 3γ cross-section. We omit it here for simplicity, since we are just
estimating the observability of the process, not its precise magnitude.

In the case under consideration the above cross section becomes,

σ =
2

46π5 α3

M2

m4

(

2 − M

m

)3 E2
A′ E2

B E
2
C

4E2
e

[

((2Ee −EA′)2 − E2
A′ −M2)

2
+M2Γ2

M

] . (25)

It is evident from the above equation that the cross-section has a resonant structure for

EA′ = Ee

(

1 −
(

M

2Ee

)2
)

In order to maximize the cross-section we will set ourselves on top of the resonant peak
and moreover will choose

EB = EC =
Ee

2

(

1 +
(

M

2Ee

)2
)

,

which are the values for the energy that maximize the numerator, E2
BE

2
C , while satisfying

the conservation equations

EA′ + EB + EC = 2Ee.

and

~pA′ + ~pB + ~pC = ~0

These substitutions lead finally to the formula
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σ =
2

48π5 α3

(

1

ΓM

)2 (Ee

m

)4 (

2 − M

m

)3
(

1 −
(

M

2Ee

)4
)(

1 +
(

M

2Ee

)2
)

. (26)

The monopolium width is dominated by the 2 γ decay,

ΓM ∼ ΓBC(EB = EC = M/2) =
π

8α2

(

M

m

)3 (

2 − M

m

)3/2

M, (27)

with a correction from the Z0 decays which is about 30% and which for the purposes of
our calculation is irrelevant. Using this width we obtain for the cross section,

σ ∼ 2α

43 π7

m2

M4

(

(

2Ee

M

)4

− 1

) (

1 +
(

M

2Ee

)2
)

. (28)

The results of our calculation are shown in Figs. 5 and 6 which we now comment. We
have two parameters in our calculation, namely the monopole massm and the monopolium
mass M . We use in the plots M and the ratio M/m. Unitarity imposes a restriction on
the latter M/m < 0.15 as can be seen in Fig. 3. We show data for two values of this
ratio, 0.01, which serves for the purpose of developing our idea and satisfies clearly the
unitarity bound, and 0.0001, which could realize certain cosmological monopole scenarios.
The equations are sufficiently simple for any one to play with them. In Fig. 5 we show
on the left the cross section at resonance as a function on the mass of the monopolium
and for a beam energy just above the monopolium threshold, i.e. 2Ee = M +0.001 GeV .
This extreme case leads to low values for the cross section due to the vicinity of the
threshold zero (see for comparison the dotted line which is away from the threshold), but
is physically very appealing because the photon of the first vertex carries almost no energy
and we have a representation of the scalar monopolium decay with two photons appearing
back to back with an energy of M/2. In this case the photon of the first vertex simply is
present to carry away the spin of the intermediate photon but (almost) no energy. We see
that the value of the cross section increases as M/m decreases. Thus initially monopolium
made of heavier monopoles, for a fixed mass, would be easier to see, if it were not because
as shown in the right figure, its width decreases dramatically.

We include the limits of the Tevatron and LHC, which in our way of presenting the data
are trivial. Note however, that both in the Tevatron and in LHC, the expected processes
are the inverse of the studied here, namely the 2 γ (and other mentioned alternatives) of
producing monopolium [23, 31].

Let us emphasize at this point looking at the data the interest of what we have named a
two scale scenario. The two scales are the monopole mass and the monopolium mass. Our
scenario becomes very interesting if the two scales are very different. It is the existence
of an additional scale, which is represented in our scheme by the parameter M/m, which
renders the present investigation exciting. If monopolium is a strongly bound system, it is
its relatively low mass which limits the usefulness of the accelerators for monopole physics
and not that of the monopole, conventionally assumed to be very large. If monopoles could
bind to an almost zero mass bound state we could study monopole physics at relatively
low energies.

In Fig. 6 we show for a fixed monopolium mass how the peak cross section changes
with the energy of the beams. We see that the threshold effect is extremely narrow and
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that the cross section jumps immediately several orders of magnitude. Thus the three
photon detection seems much more favorable than the two photon one. The signal is clear:
one photon recoiling against two others, whose dynamics describes a resonant structure.
Once the threshold effect disappears the cross section is relatively flat with energy.

Let us summarize our findings. In our two scale scenario,

i) the studied cross section has a resonant peak (see Eq.(32)) at the monopolium mass
M ;

ii) the order of magnitude of the cross section is ”almost” beam energy independent,
once we are away from the threshold, and is consistent with observability in present
day machines [23, 31, 32, 33] for monopolium masses of up to 1000GeV (see Figs. 5
and 6) and monopole masses only limited by the validity of our theoretical approach;

iii) a similar analysis can be carried out for γ Z0 and 2Z0 decays;

iv) a similar analysis can be carried out for hadronic production, complicated by the
inclusion of the sub-structure of the intervening hadrons.

v) Our analysis can generalized to study the 2 γ, γ Z0 and 2Z0 monopolium production
process which should be the dominating mechanism for LHC.

5 Conclusions

We have performed an investigation looking for hints of the so far not seen monopoles.
Our working assumption is that monopoles appear strongly bound forming monopolium,
a monopole-antimonopole bound state, due to their strong electromagnetic interaction.

We develop a scenario in which monopolium is produced and desintegrates into 2γ,
γ Z0 and 2Z0’s. We detail the structure and magnitude of the first of this processes to
determine observability. We develop a two energy scale scenario, whose

i) low scale is governed by monopolium and we consider for quantitative purposes that
it could be reachable by present day machines.

ii) and whose high energy scale is governed by the monopole mass and arises through
the structure of monopolium.

m >> Ee.

Under these circumstances we can estimate the cross section as a function of the
monopolium mass. The monopole mass is determined by the value of the cross section
and any mass is attainable, the limitations only arising from the approximations used in
our model.

Since at present we can not calculate the monopolium parameters, M and ΓM , the
experimental endeavor is not easy. There are however some features which might simplify
the task,
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i) the resonance peak of the monopolium can be found in four exit channels 3γ, 2γ Z0

and γ 2Z0’s and 3Z0’s;

ii) monopolium can be produced in an excited state before it annihilates, thus the
annihilation process will be accompanied by a Rydberg radiation spectrum;

iii) the same processes can be studied hadronically, the only complication arising from
the inclusion of the hadron sub-structure.

The calculated values for the cross sections, corresponding to reasonable monopolium
mass scenarios, render our calculation interesting and this line of research worth pursuing.
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A Appendix: Relativistic corrections

Let us define the relativistic factor β = v/c through the equation

β2 =< n lml ms|
p2

m2
|n lml ms > . (29)

It can be easily calculated using the exact expectation value to give [29],

β =

√

3

4ρ
. (30)

This result, which coincides with the semiclassical treatment and the use of Ehrenfest’s
theorems, namely equating the centrifugal and Coulomb forces

m
v2

r
=
e2

r2
⇒ p2

2m
=

1

2

e2

r

which leads to

E =
p2

2m
− e2

r
=

p2

2m
− p2

m
= − p2

2m
.

This corresponds to equating the absolute values of the kinetic and the binding energies,

Kinetic Energy = |Binding Energy|, (31)

which gives
p2

m
=
(

1

8α

)2 m

n2
,

13



that gives rise, using Eq.(16), to
p2

m2
=

3

4

1

ρ
.

Thus, the non-relativistic calculation is only truly valid for ρ > 3/4.
One can easily incorporate the kinetic terms in Eq.(18) to the lowest order approxi-

mation leading to,

m (
β2

2
− β4

8
+
β6

16
+ ...) (32)

Performing the virial theorem calculation,

Etotal = m (1 +
β2

2
− β4

8
+
β6

16
) (33)

and therefore the relativistic velocity turns out to be

βrel =
β

1 + β2

2
− β4

8
+ β6

16

. (34)

The non-relativistic velocity β and the relativistic one βrel are shown in Fig. 4. Finally
the correction to the potential compared to the binding energy becomes,

g2

32m4 < [∆2, [∆2, 1
r
]] >

|Ebinding|
<
g2

32

p3

m3
≈ 137

128
β3

rel. (35)

The upper bound is also shown in Fig. 4
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