8,584 research outputs found
Efficient CSL Model Checking Using Stratification
For continuous-time Markov chains, the model-checking problem with respect to
continuous-time stochastic logic (CSL) has been introduced and shown to be
decidable by Aziz, Sanwal, Singhal and Brayton in 1996. Their proof can be
turned into an approximation algorithm with worse than exponential complexity.
In 2000, Baier, Haverkort, Hermanns and Katoen presented an efficient
polynomial-time approximation algorithm for the sublogic in which only binary
until is allowed. In this paper, we propose such an efficient polynomial-time
approximation algorithm for full CSL. The key to our method is the notion of
stratified CTMCs with respect to the CSL property to be checked. On a
stratified CTMC, the probability to satisfy a CSL path formula can be
approximated by a transient analysis in polynomial time (using uniformization).
We present a measure-preserving, linear-time and -space transformation of any
CTMC into an equivalent, stratified one. This makes the present work the
centerpiece of a broadly applicable full CSL model checker. Recently, the
decision algorithm by Aziz et al. was shown to work only for stratified CTMCs.
As an additional contribution, our measure-preserving transformation can be
used to ensure the decidability for general CTMCs.Comment: 18 pages, preprint for LMCS. An extended abstract appeared in ICALP
201
Towards a Proof Theory of G\"odel Modal Logics
Analytic proof calculi are introduced for box and diamond fragments of basic
modal fuzzy logics that combine the Kripke semantics of modal logic K with the
many-valued semantics of G\"odel logic. The calculi are used to establish
completeness and complexity results for these fragments
Search for WW and WZ production in lepton plus jets final state at CDF
We present a search for WW and WZ production in final states that contain a charged lepton (electron or muon) and at least two jets, produced in sqrt(s) = 1.96 TeV ppbar collisions at the Fermilab Tevatron, using data corresponding to 1.2 fb-1 of integrated luminosity collected with the CDF II detector. Diboson production in this decay channel has yet to be observed at hadron colliders due to the large single W plus jets background. An artificial neural network has been developed to increase signal sensitivity, as compared with an event selection based on conventional cuts. We set a 95% confidence level upper limit of sigma_{WW}* BR(W->lnu,W->jets)+ sigma_{WZ}*BR(W->lnu,Z->jets)We present a search for WW and WZ production in final states that contain a charged lepton (electron or muon) and at least two jets, produced in √s=1.96 TeV pp̅ collisions at the Fermilab Tevatron, using data corresponding to 1.2 fb-1 of integrated luminosity collected with the CDF II detector. Diboson production in this decay channel has yet to be observed at hadron colliders due to the large single W plus jets background. An artificial neural network has been developed to increase signal sensitivity, as compared with an event selection based on conventional cuts. We set a 95% confidence level upper limit of σWW×BR(W→ℓνℓ,W→jets)+σWZ×BR(W→ℓνℓ,Z→jets)<2.88 pb, which is consistent with the standard model next-to-leading-order cross section calculation for this decay channel of 2.09±0.12 pb.Peer reviewe
The Mesozoic along-strike tectono-metamorphic segmentation of Longmen Shan (eastern Tibetan plateau)
The Longmen Shan belt (eastern border of the Tibetan plateau) constitutes a tectonically active region as demonstrated by the occurrence of the unexpected 2008 Mw 7.9 Wenchuan and 2013 Mw 6.6 Lushan earthquakes in the central and southern parts of the belt respectively. These events revealed the necessity of a better understanding of the long‐term geological evolution of the belt and its effect on the present dynamics and crustal structure. New structural and thermobarometric data offer a comprehensive dataset of the paleo‐temperatures across the belt and P‐T estimates for low‐grade metamorphic domains. In the central Longmen Shan, two metamorphic jumps of 150‐200°C, 5‐6 kbar and ~50 °C, 3‐5 kbar acquired during the Early Mesozoic are observed across the Wenchuan and Beichuan faults respectively, attesting to their thrusting movement and unrevealing a major decollement between the allochtonous Songpan‐Garze metasedimentary cover (at T > 500°C) and the autochtonous units and the basement (T < 400°C). In the southern Longmen Shan, the only greenschist‐facies metamorphism is observed both in the basement (360 ± 30°C, 6 ± 2 kbar) and in the metasedimentary cover (350 ± 30°C, 3 ± 1 kbar). Peak conditions were reached at c. 80‐60 Ma in the basement and c. 55‐33 Ma in the cover, c. 50 Ma after the greenschist‐facies metamorphic overprint observed in the central Longmen Shan (c. 150‐120 Ma). This along‐strike metamorphic segmentation coincides well with the present fault segmentation and reveals that the central and southern Longmen Shan experienced different tectono‐metamorphic histories since the Mesozoic
Recommended from our members
Biomarker discovery and redundancy reduction towards classification using a multi-factorial MALDI-TOF MS T2DM mouse model dataset
Diabetes like many diseases and biological processes is not mono-causal. On the one hand multifactorial studies with complex experimental design are required for its comprehensive analysis. On the other hand, the data from these studies often include a substantial amount of redundancy such as proteins that are typically represented by a multitude of peptides. Coping simultaneously with both complexities (experimental and technological) makes data analysis a challenge for Bioinformatics
Effect of Short-Term Administration of Glucagon on Gene Expression of the Insulin Receptor in Primary Cultured Calf Hepatocytes
This study investigated whether increased glucagon levels, caused by the short-term administration of glucagon, lead to an increase in gene expression of the insulin receptor (InsR) in calf hepatocytes cultured in vitro. After 72 hrs of culturing, glucagon was added to calf hepatocytes at a five different concentrations of 0, 1, 10, 100 and 1000 nM. InsR mRNA expression was determined by internally controlled reverse transcriptase polymerase chain reaction. No changes in InsR mRNA expression (InsR/β-actin gray scale) were detected in hepatocytes treated with glucagon compared with the control group and there were no significant differences between the different concentrations. In conclusion, short-term administration of glucagon did not directly influence the gene expression of InsR in primary cultured calf hepatocytes
Cosmological Evolution of a Tachyon-Quintom Model of Dark Energy
In this work we study the cosmological evolution of a dark energy model with
two scalar fields, i.e. the tachyon and the phantom tachyon. This model enables
the equation of state to change from to in the evolution of
the universe. The phase-space analysis for such a system with inverse square
potentials shows that there exists a unique stable critical point, which has
power-law solutions. In this paper, we also study another form of
tachyon-quintom model with two fields, which voluntarily involves the
interactions between both fields.Comment: 17 pages, 10 figure
A global synthesis reveals biodiversity-mediated benefits for crop production
Human land use threatens global biodiversity and compromises multiple ecosystem functions critical to food production. Whether crop yield-related ecosystem services can be maintained by a few dominant species or rely on high richness remains unclear. Using a global database from 89 studies (with 1475 locations), we partition the relative importance of species richness, abundance, and dominance for pollination; biological pest control; and final yields in the context of ongoing land-use change. Pollinator and enemy richness directly supported ecosystem services in addition to and independent of abundance and dominance. Up to 50% of the negative effects of landscape simplification on ecosystem services was due to richness losses of service-providing organisms, with negative consequences for crop yields. Maintaining the biodiversity of ecosystem service providers is therefore vital to sustain the flow of key agroecosystem benefits to society. [Abstract copyright: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Temporal networks of face-to-face human interactions
The ever increasing adoption of mobile technologies and ubiquitous services
allows to sense human behavior at unprecedented levels of details and scale.
Wearable sensors are opening up a new window on human mobility and proximity at
the finest resolution of face-to-face proximity. As a consequence, empirical
data describing social and behavioral networks are acquiring a longitudinal
dimension that brings forth new challenges for analysis and modeling. Here we
review recent work on the representation and analysis of temporal networks of
face-to-face human proximity, based on large-scale datasets collected in the
context of the SocioPatterns collaboration. We show that the raw behavioral
data can be studied at various levels of coarse-graining, which turn out to be
complementary to one another, with each level exposing different features of
the underlying system. We briefly review a generative model of temporal contact
networks that reproduces some statistical observables. Then, we shift our focus
from surface statistical features to dynamical processes on empirical temporal
networks. We discuss how simple dynamical processes can be used as probes to
expose important features of the interaction patterns, such as burstiness and
causal constraints. We show that simulating dynamical processes on empirical
temporal networks can unveil differences between datasets that would otherwise
look statistically similar. Moreover, we argue that, due to the temporal
heterogeneity of human dynamics, in order to investigate the temporal
properties of spreading processes it may be necessary to abandon the notion of
wall-clock time in favour of an intrinsic notion of time for each individual
node, defined in terms of its activity level. We conclude highlighting several
open research questions raised by the nature of the data at hand.Comment: Chapter of the book "Temporal Networks", Springer, 2013. Series:
Understanding Complex Systems. Holme, Petter; Saram\"aki, Jari (Eds.
Mean Interplanetary Magnetic Field Measurement Using the ARGO-YBJ Experiment
The sun blocks cosmic ray particles from outside the solar system, forming a
detectable shadow in the sky map of cosmic rays detected by the ARGO-YBJ
experiment in Tibet. Because the cosmic ray particles are positive charged, the
magnetic field between the sun and the earth deflects them from straight
trajectories and results in a shift of the shadow from the true location of the
sun. Here we show that the shift measures the intensity of the field which is
transported by the solar wind from the sun to the earth.Comment: 6 papges,3 figure
- …
