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Abstract The Longmen Shan belt (eastern border of the Tibetan plateau) constitutes a tectonically active
region as demonstrated by the occurrence of the unexpected 2008Mw 7.9Wenchuan and 2013Mw 6.6 Lushan
earthquakes in the central and southern parts of the belt, respectively. These events revealed the necessity
of a better understanding of the long-term geological evolution of the belt and its effect on the present
dynamics and crustal structure. New structural and thermobarometric data offer a comprehensive data set of
the paleotemperatures across the belt and P-T estimates for low-grade metamorphic domains. In the central
Longmen Shan, two metamorphic jumps of 150–200 °C, 5–6 kbar and ~50 °C, 3–5 kbar acquired during
the Early Mesozoic are observed across the Wenchuan and Beichuan faults, respectively, attesting to their
thrusting movement and unrevealing a major decollement between the allochtonous Songpan-Garze
metasedimentary cover (at T > 500 °C) and the autochtonous units and the basement (T < 400 °C). In the
southern Longmen Shan, the only greenschist facies metamorphism is observed both in the basement
(360 ± 30 °C, 6 ± 2 kbar) and in the metasedimentary cover (350 ± 30 °C, 3 ± 1 kbar). Peak conditions were
reached at ca. 80–60 Ma in the basement and ca. 55–33 Ma in the cover, ca. 50 Ma after the greenschist facies
metamorphic overprint observed in the central Longmen Shan (ca. 150–120 Ma). This along-strike
metamorphic segmentation coincides well with the present fault segmentation and reveals that the central
and southern Longmen Shan experienced different tectonometamorphic histories since the Mesozoic.

1. Introduction

The Longmen Shan (LMS) thrust belt constitutes the eastern border of the Tibetan plateau (Figures 1a and 1b),
a tectonically active region as demonstrated by the occurrence of the Mw 7.9 Wenchuan (2008) and Mw 6.6
Lushan (2013) earthquakes in the central and southern parts of the belt, respectively. The belt sits between
the Sichuan basin to the east, which lies on the South China craton (e.g., Jiang & Jin, 2005; Huang et al.,
2014) and the Songpan-Garze (SPG) block to the west and is structured along different NE-SW oriented,
northwest dipping fault zones. In the central LMS, the three major faults classically identified are as follows
(from the west to the east): the Wenchuan fault (WF) that lies in the Wenchuan Shear zone (WSZ), the
Beichuan and the Guanxian faults (BF and GF; Figures 1 and 2). The WF and BF are thought to be inherited
from the Paleozoic, when the South China block represented a passive margin (Burchfiel et al., 1995; Chen
& Wilson, 1995; Roger et al., 2010) structured in tilted blocks (Jia et al., 2006). In the southern LMS, the
Wulong and the Xiaoguanzi faults are often considered as the southern prolongation of the WF and BF,
respectively (e.g., Cook et al., 2013; Tian et al., 2016), while the Shuangshi fault has been proposed to be
the continuity of the GF (Lichun et al., 2014; Figures 1b–1d).

The WF separates the SPG units from the LMS sensu stricto. Seismic investigations show that the SPG crust
west of the WF is over thickened (>60 km, Figure 1d) compared to the South China crust (~40 km, Robert,
Zhu, et al., 2010; Z. Zhang et al., 2009, 2010). The timing and modality of the crustal thickening, however, still
remain debated. Low-temperature thermochronology data obtained on the Pengguan, Baoxing,
Xuelongbao, and Tonghua crystalline massifs (slices of the South China basement) document a phase of
exhumation of the belt since ca. 30 Ma (Godard et al., 2009; Kirby et al., 2002; Tan et al., 2017; Wang et al.,
2012). The shortening accommodated since the Oligocene has been estimated at ~35 km at the front of
the LMS (Hubbard & Shaw, 2009; Hubbard et al., 2010). Although this value is likely to be a minimal
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estimate due to the propagation of blind thrusts into the Sichuan basin and to the oblique component of the
BF imaged after the Wenchuan earthquake (e.g., de Michele et al., 2010), it cannot explain the total crustal
thickness observed in the SPG (e.g., Robert, Pubellier, et al., 2010).

An increasing number of studies propose that part of the crustal thickness of the SPG terrane and of the
central and southern Tibetan plateau is acquired during the Mesozoic (e.g., Airaghi, Lanari, et al., 2017;
Airaghi, de Sigoyer, et al., 2017; Billerot et al., 2017; Kapp et al., 2003, 2007; de Sigoyer et al., 2014; Xue
et al., 2017). Metamorphic and structural studies carried out in the Danba area (~ 00 km west of the LMS)
and in the central LMS (Airaghi, Lanari, et al., 2017; Billerot et al., 2017; Dirks et al., 1994; Harrowfield &
Wilson, 2005; Weller et al., 2013; Worley & Wilson, 1996) as well as 40Ar/39Ar ages on clay mineral in

Figure 1. Structural and geological map of the Longmen Shan area. (a) Simplified geological map of the eastern border of the Tibetan plateau, modified from Billerot
et al. (2017). WF: Wenchuan fault, WSF: Western Slope fault, BF: Beichuan fault, GF: Guanxian fault, WuF: Wulong fault, XF: Xiaoguanzi fault, SF: Shuangshi fault.
White frame: zoom of panel b. (b) Geological map of the central Longmen Shan modified from Cook et al. (2013) and adapted from 1:200,000 geologic map (SBGMR
(Sichuan Bureau of Geology and Mineral Resources), 1991). White frames: enlarged views in Figure 2. White dots: samples collected to complete transects of
Figure 2 (see text for details). (c) Geological cross section along the profile AA0 for the southern Longmen Shan, modified from Cook et al. (2013). (d) Geological cross
section along the profile BB0 for the central Longmen Shan. P-T-t conditions in frames are from Airaghi, Lanari, et al. (2017), Airaghi, de Sigoyer, et al. (2017), and
Airaghi et al. (2018). The crustal structure is from the receiver function data of Robert, Pubellier, et al. (2010). USGS = United States Geological Survey.
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pseudotachylites of the BF (Zheng et al., 2016) suggest a compressive phase of deformation during the Late
Triassic-Early Jurassic, driven by the closure of the Paleotethys. Recent petrochronological studies have also
documented a metamorphic and deformation event in the central LMS at the Early Cretaceous (Airaghi, de
Sigoyer, et al., 2017; Airaghi et al., 2018). These studies are however still sparse and often restricted to the
higher metamorphic units of the belt, limiting our understanding of the Mesozoic thermal and structural
evolution of the LMS. Furthermore, substantial differences exist between the central and southern part of
the belt. Structural and geochronological data show that the southern LMS experienced thickening and
deformation during the Late Cretaceous-Early Paleogene (Tian et al., 2016). The southern area exhibits
higher mean elevation, lower relief, and lower channel steepness than the central LMS (H. Zhang et al.,
2011). In the southern LMS the deformation propagated into the Sichuan basin, and the southern Sichuan
basin was the only locus of deposition along the belt during the Cenozoic (Burchfiel et al., 1995; Densmore
et al., 2007). Differences between the southern and central LMS are also observed in the present tectonics.

Figure 2. Enlarged views of the geological map of the studied transects. (a) Area of the Tonghua transect (samples NT) and Jiuding Shan Nappe (samples lm).
Symbols in yellow indicate the mineral assemblage observed by Airaghi, Lanari, et al. (2017). Black: field stops (no sample collected). (b) Studied area in the
southern Longmen Shan. The Baoxing crystalline massif (basement) crops out into two slices. The inset shows de direction and dip of S2 along the transect from
samples ba14–8 to sample ba15–6. Black dots: field stops (no sample collected). (c) Location of the South Tonghua and Shapai transects in the Xuelongbao area.
(d) Sanjiang transect area.
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The 2008 Mw 7.9 Wenchuan earthquake epicenter was located on the BF, which was reactivated with a
thrusting and dextral strike-slip movements (e.g., de Michele et al., 2010; X. Xu et al., 2009). The 2013 Mw

6.6 Lushan earthquake ruptured instead the Range Front Blind Thrust (RFBT), below the Shuangshi fault, with
a pure thrusting movement (e.g., Liu et al., 2013), leaving in the middle an unbroken segment 50-km wide
and put into question the connection between faults of the central and southern LMS.

Major questions therefore remain unresolved: (1) Did the southern and central LMS experience the same
long-term geological evolution? (2) What does this imply in terms of long-term functioning of the major
inherited faults?

This study uses a tectonopetrochronological approach to investigate if the long-term structuration of the
LMS may help to understand the present tectonics. We present new field observations and structural data
for both the central and southern LMS, a comprehensive data set of the paleotemperatures across the belt
and the first barometric estimates for the low-grade metasedimentary rocks in the external domain of the
central LMS (east of the WF) and in the southern LMS. This will allow us to (1) estimate the total exhumation
cumulated during multiple deformation phases across the major faults, (2) discuss the link between the fault
systems of the central and southern LMS at the long-term scale, and (3) unravel an asymmetry in the
geological evolution of the belt since the Mesozoic. The features recognized for the LMS may be
characteristic of the evolution of other intracontinental thrust belts.

2. Geological Setting and Studied Areas

In the central and southern LMS, the Neoproterozoic South China basement crops out through the sedimen-
tary cover in the Xuelongbao, Tonghua, Pengguan, and Baoxing massifs (E. Meng et al., 2015; Yan et al., 2008;
Zhou et al., 2006; Figures 1a–1c and 2). Close to the BF and within theWSZ, the crystalline massifs are affected
by a brittle-ductile deformation underlined by multiples centimeter- to meter-scale greenschist facies meta-
morphic shear zones and veins of few millimeters to few centimeters. Metamorphic overprint occurred at
280 ± 30 °C, 7 ± 1 kbar (Pengguan massif) and 370 ± 35 °C, 7 ± 1 kbar (Tonghua massif) at ca. 140–137 Ma
(Airaghi, de Sigoyer, et al., 2017; Airaghi et al., 2018). Close to the Wulong fault (WuF) the northern slice of
the Baoxing massif (Figure 2b) is also strongly deformed (up to mylonitization; Tian et al., 2016; this study).

Stratigraphic and structural relations within the Paleozoic-Mesozoic metasedimentary cover allow three
distinct sedimentary provinces to be recognized. They include the following:

1. Allochtonous units constituted by a thick (up 15 km prior to deformation; Calassou, 1994) series of strongly
deformed and metamorphosed Paleozoic-Lower Triassic pelitic-dominated sediments deposited in the
SPG domain (Burchfiel et al., 1995; Chen & Wilson, 1995; Robert, Pubellier, et al., 2010; Yan et al., 2011).
About 40 km northwest of the WF the sediments are intruded by different generations of syn to post
deformation granites emplaced between 224 and 188 Ma (de Sigoyer et al., 2014; Roger et al., 2004), at
a depth of 7–11 km (Deschamps et al., 2018; Dirks et al., 1994). The metasedimentary cover of the
Tonghua and Xuelongbao massifs underwent an amphibolite-facies metamorphism at 9–12 kbar, 530–
580 °C (ca. 220–180 Ma) underlined by Grt + Bt + Wm ± St (abbreviations are from Whitney & Evans,
2010, except Wm = white mica) and followed by a greenschist facies overprint at 2–5 kbar, 350–400 °C
at ca. 140 Ma (Airaghi, Lanari, et al., 2017, Airaghi et al., 2018; Dirks et al., 1994; Worley & Wilson, 1996);

2. Paraautochtonous units of SPG origin mainly cropping out southeast of the WF and northwest of the NW
dipping West Slope Fault (WSF in Figures 1b and 1c), in the Jiuding Shan Nappe (Chen & Wilson, 1995; E.
Wang et al., 2014). These units are also highly deformed and include a series of marbles, carbonates, and
metapelites deposed on the South China margin in a more proximal environment compared to the
allochthonous units (Burchfiel et al., 1995; Li, Yan, et al., 2014). At the southern end of the Pengguanmassif
and in the foreland system paraautochtonous Devonian to Triassic units crop out as a system of klippen
(Chen & Wilson, 1995; Robert, Pubellier, et al., 2010; Zheng et al., 2014);

3. Autochtonous units (~5-km thick prior to deformation) are characterized by a carbonated-dominated stra-
tigraphy suggestive of a platform depositional environment (e.g., Li et al., 2003). They crop out at the front
of the belt with a typical structure of a fold and thrust belt and triangle zones (Jia et al., 2006; Robert, 2011).
In the footwall of the BF no metamorphism is observed.

For the sake of clarity, three domains will be distinguished in the following: (1) the internal units including the
terrains west of the WF in the central LMS, (2) the external units including the terrains east of the WF (the
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Pengguan massifs and its sedimentary cover), and (3) the units of the southern LMS (Baoxing massif and its
metasedimentary cover). In the central LMS, a series of structural measurements, observations, and samples
were collected along four transects perpendicular to the major structures (North Tonghua transect, samples
labeled NT in Figure 2a; Shapai transect, samples labeled XB or CH in Figure 2c; South Tonghua transect,
samples labeled W in Figure 2c; Sanjiang transect, samples labeled SA Figure 2d). A fifth transect in the
southern LMS (samples labeled BA in Figure 2b) that includes both the basement (northern slice of the
Baoxing massif) and its metasedimentary cover was also studied. Samples collected along transects were
supplemented by isolated samples collected in the Jiuding Nappe, in the Sinian sediments roofing the
northern Pengguan crystalline massif, in the immediate footwall of the WF and in the foreland belt (samples
labeled LM, Figures 1b and 2a).

3. Field Structures
3.1. The Central LMS
3.1.1. Internal Units
In a regional framework the intensity of the deformation of the Paleozoic metasedimentary series in the
internal units increases from the SPG terrain eastward, approaching the WSZ, where the base of the SPG
sedimentary pile is exhumed and is particularly relevant close to the contact with the crystalline massifs
around which structures are deflected (Figure 3). In all metasedimentary units, macrostructures related to
three phases of ductile deformation (D1, D2, D3) and a late brittle-ductile deformation phase (D4) were
observed, with different degrees of preservation that vary locally. In the crystalline basement, the D3 and
D4 were mainly observed.

The first (D1) is particularly preserved in the North Tonghua transect. It is characterized by a pervasive
subvertical slate cleavage (S1) striking from N30-N55 in the northernmost areas to N10-N40 north of the
Sanjiang area (Figures 3, 4a, and 4c).

S1 is mildly crenulated during a second deformation phase D2 according to steeply plunging upright to
inclined F2 fold axes striking N60-N75 (Figure 3). F2 folds are similar, tight to isoclinal and show in general
symmetrical limbs (Figures 4d and 4e). The main S2 cleavage develops parallel to the F2 axial planes
(Figures 3 and 4a–4c). The S2 is deflected around the Xuelongbao massif (Figure 3). At a large scale, D2 is
responsible for the folding of the internal metasedimentary units along the Tonghua transect in a NE-SW
oriented and SE verging anticline and of the Silurian metasedimentary rocks along the Shapai transect in a
system of tight double-verging anticlines and synclines due to the deflection of the structures around the
Xuelongbao massif (Figures 2c and 3). Here subparallel E verging thrusts (N20–30 W40–80, top-to-E shearing)
slice the Devonian-Carboniferous units (Figures 3 and 4g).

The third ductile deformation phase D3 is responsible for the folding of the S2 and F2, according to F3 folds
axes (F3 in Figures 3, 4a, 4c, and 4d). This results in undulated F2 fold hinges or in twisted F2 folds. Folds
tighten approaching the crystalline massifs. F3 are generally asymmetric, opened folds, and develop with
subhorizontal axes striking at low angle with the north (Figures 3 and 4f). D3 leaded to a coplanar and oblique
reactivation of the S2 cleavage resulting in C3/S2-S3 composite structures (Figure 4h). C/S structures indicate
a top-to-SE sense of shear. Quartz veins associated with D2 are deformed by F3 resulting in quartz boudins
(yellow in Figure 4d). D3 is particularly well expressed in the Xuelongbao transect and north of the
Sanjiang area. The contact between the Xuelongbao massif and the Silurian sediments is tectonic as attested
by the pervasive deformation affecting the limit between the two lithologies (with C/S structures showing a
top-to-E movement).

The different populations of striae recorded at the surfaces of single fault planes in the metasedimentary
rocks indicate that the majority of the faults experienced an early thrusting movement followed by one or
more reactivations as normal or strike-slip faults related to the brittle deformation D4. The preserved thrust
faults are generally N50-N70 (except along the Shapai transect were they are N20-N28), dipping 40–75W
and show a top to southeast sense of shear (line 80–84NE). In the Devonian units east of the WF (outcrop
lm142, Figure 2a) thrust faults were reactivated first as normal faults (line 56SW) and then with a dextral
strike-slip movement as indicated by subhorizontal striae (9SW). In the Silurian metasedimentary rocks along
the Tonghua transect (outcrop to13–4, Figure 2a), thrust faults were instead first reactivated with a dextral
strike-slip movement then with a normal movement. Dextral strike-slip faults are subvertical and oriented
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N50–62 (line 4E). Normal faults oriented N70, dipping 70–80W are locally observed north of the Pengguan
massif and no large normal detachments were identified.
3.1.2. External Units
Three phases of ductile deformation were also observed in the external sedimentary units of the LMS. They
are confined to the Silurian to Devonian paraautochthonous sediments of the Jiuding Shan Nappe. In this
area the main cleavage is the S2-oriented N35, NW dipping and associated with F2 folds. F2 are folded by
later F3 folds (Figure 3). In the paraautochtonous units of the Sanjiang sector, Silurian sediments are folded
by F2 and F3 faults and exhibit C3-S3 structures. C planes are flatter than S, strike in average at N161 27SE
and are associated with NNW SSE trending folds (Figure 3).

In the autochthonous units east of the WSF, the deformation is less intense and only one cleavage oriented
N30 to N95 affects the original stratigraphy (S0) and is related to large folds. In the autochthonous units of the
Sanjiang sector, east of the BF, only one ductile deformation phase is superimposed to the stratigraphy S0.

3.2. The Southern LMS

In the southern LMS, the Neoproterozoic crystalline basement crops out in two slices in the hanging walls of
the Wulong and Xiaoguanzi faults (as in the internal and external domains of the central LMS). In the hanging

Figure 3. Structural map of the central Longmen Shan, based on our field investigations, superimposed on the geological
map of the Longmen Shan and Songpan-Garze area adapted from 1:200,000 geologic map (SBGMR (Sichuan Bureau of
Geology and Mineral Resources), 1991). Black and grey stereograms indicate the orientations and dips of the S1 and S2
cleavages, respectively. Rose diagrams represent the distribution of the main direction of the F2 and F3 folds measured in
the field. Major tectonic discontinuities are indicated by continuous black lines. WF: Wenchuan fault, WSF: West Slope fault,
BF: Beichuan fault, GF: Guanxian fault.
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Figure 4. Photographs of the mesoscale structures observed in the field (internal units of central LMS). (a) Pervasive S2 crenulation cleavage (parallel to F2 folds) in
the Silurian sediments of the North Tonghua transect. F2 axes are folded (modified from A. Robert, 2011). (b) Top-to-SE C/S structures in the garnet-biotite
bearing metapelites of the North Tonghua section (close to locality to13–5 in Figure 2a). (c) S1 and S2 cleavage preserved in the Silurian sediments north of the
Tonghua massif. F2 are twisted (modified from A. Robert, 2011). (d) F2 and F3 folds in the Devonian sediments of the Shapai transect. Quartz veins form bundins
(yellow). (e) F2 folds in the Devonian sediments of the Shapai transect. (f) F3 folds observed close to the figure of panel e. (g) Top-to-ESE thrust slicing the Devonian
metasedimentary cover in the Shapai transect. (h) C3-S3 structures showing a top-to-SE shearing in the Devonian sediments of the Shapai transect.
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wall of the Xiaoguanzi fault, the basement is weakly deformed. Metamorphic veins, a few millimeter- to
centimeter-thick (filled with greenschist facies mineral assemblages) locally cross cut the magmatic
foliation. The strongest deformation is observed in the immediate hanging wall of the WuF, where the
basement is folded in a large-scale antiform and exhibits mylonitc and schistose zones (Figures 2b and 5a)
alternating with undeformed zones. Within the most deformed rocks, C-S structures showing a top-to-E
sense of shear are observed (C N22 W30, S N25 W66, stretching lineation of N98; Figures 2b and 5a). Late
W dipping semibrittle normal faults (oriented N10 SW65) showing a top-to-the-W movement cross cut the

Figure 5. Photographs of the mesoscale structures in the southern LMS. (a) Top-to-E shearing structures in mylonitic zones of the basement lately cross cut by
top-to-W normal faults. (b) Pervasive schistosity parallel to the bedding in the Ordovician units close to the outcrop ba14–22 (Figure 2b). (c) Constriction features in
the Proterozoic units close to the outcrop ba14–17. (d) Kink bands close to the outcrop ba14–13. (e) Top-to-E shearing structures in the Silurian sediments close to the
outcrop ba14–19.
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earlier deformation (Figure 5a). The ductile deformation within the basement underlined by pervasive
schistosity is associated with metamorphic minerals typical of the greenschist facies conditions, including
white mica, chlorite, and epidote.

Themetasedimetary cover of Paleozoic marbles, limestone, calc-schists, sandstones, and Triassic flysch is very
deformed west of the WuF (in a structural position equivalent to the internal domain of the central LMS),
forming a system of NE-SW oriented and SE verging folds (axes N18 to N56, S1–S2 N69–N41; Figure 2b).
The main cleavage particularly tight in the Silurian units is west dipping, subparallel to the bedding
(Figure 5b). Along the SE-NW directed transect crossing the Ordovician to Triassic sedimentary series
(Figure 2b), C-S structures indicate a top-to-E sense of shear (Figure 5e) and are defined by greenschist facies
metamorphic minerals including white mica and chlorite developing in metamorphic veins or pervasively in
larger volumes of rock. Three kilometers west of the WuF (hanging wall), gauge zones made by metric blocs
within a thin matrix are observed in the Proterozoic metasedimentary rocks (ba14-14 in Figure 2b). Here rocks
are deformed (ba14-17) with the streaching lineation strongly dominant over the schistosity (S N65 66NW,
pitch of L 78NW, Figure 5c).

In the immediate footwall of the WuF (ba14–13 in Figure 2b), Silurian rocks are folded to form kink bands
(Figure 5d), suggesting a brittle-ductile deformation. Eastward-plunging structures were locally observed;
they were interpreted as the result of the tilting of original structures during the Cenozoic re-activation of
the belt. No medium-grade metamorphic minerals were observed in the southern LMS as it was instead
the case in the central part of the belt.

4. Sampling and Sample Description

Fifty-seven samples were collected for this study. Their elevations range between 1,585 and 1,710 m (North
Tonghua), between 1,460 and 1,545 m (South Tonghua), between 2,047 and 1,850 m (Shapai), between 1,720
and 1,810 m (Sanjiang), and between 1,100 and 1,300 m in the southern LMS (Baoxing area).

Among collected samples, 49 were organic-rich schists and carbonates suitable for the Raman Spectroscopy
on Carbonaceous Material (RSCM) thermometry (Table S1 in the supporting information). The mineralogy of
samples from the North and South Tonghua transects is described in details elsewhere (Airaghi, Lanari, et al.,
2017; Airaghi et al., 2018).

4.1. Central LMS
4.1.1. Internal Units (Shapai Transect)
Samples from the Shapai transect collected for thermometric purposes (see Figure 2c) exhibit three types of
ductile microstructures related to three ductile deformation phases (D1, D2, D3). An early cleavage S1 (D1) is
preserved in the inclusion trails of Grt, Bt, and St porphyroblasts (Figures 6a and 6b). S1 is folded by a white-
mica bearing crenulation cleavage S2 (D2; Figures 6a–6c). Euhedral porphyroblasts of Bt (±Grt, ±St)
500 μm–3 mm in size are rotated and wrapped in the S2 cleavage (Figures 6a and 6b) and exhibit crenulated
surfaces (Figure 6b). Staurolite is only observed in samples collected in a narrow zone along the Shapai
transect as 500 μm up to 3 cm porphyroblasts with X-shaped twins (Figure 6b). No kyanite was observed.
Biotite and ilmenite developed in pressure shadows around staurolite. Samples close to the Xuelongbao
massif (e.g., ch09-241 and ch09-244) exhibit a tight folded cleavage made of elongated crystals of white mica
and quartz microlithons (Figure 6c) and no high-grade metamorphic minerals. White mica is folded at both
the micrometric and the centimeter-scale along with Qz veins, while in the less deformed domains relicts of
biotite are preserved. Chlorite appears as crenulated flakes 200–500 μm large (Figure 6c).

Approaching the WSZ, only greenschist facies metamorphic assemblages are observed. In the strongly
deformed sample lm223 (Long. 103.6049, Lat. 31.3885), collected within the WSZ, eye-shaped nodules
composed of Qz, brown to yellow Ep 200–300 μm in length, and Chl replacing Grt are wrapped in the main
cleavage (Figure 6d).
4.1.2. External Units
In rocks of the external domain of the LMS, the only metamorphic assemblage characteristic of the
greenschist facies conditions was observed made of Qz + K-Wm + Chl + Ep + Fs + oxides. In the
paraautochtonous units of the Jiuding Shan Nappe (e.g., organic-rich schist lm09-59, Long. 103.7448, Lat.
31.5734), the S1 cleavage is subparallel to S0 (white layer in Figure 6e) and crosscut by discrete S2
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Figure 6. Photomicrographs of representative samples collected in the internal and external metasedimentary units. Abbreviation are from Whitney and Evans
(2010), except Wm = white mica. (a) Biotite-bearing schistosity along the Shapai transect. (b) Deformed staurolite porphyroblast in the Shapai area. (c) Chl-Wm
microfolds close to the contact between the metasedimentary cover and the Xuelongbao massif. (d) Ep + Qz + Chl pseudomorph of garnet close to the WSZ.
(e) Greenschist facies bearing assemblage in sample lm230. (f) Deformed organic-rich schist lm09–59. (g) Backscatter image (BSE) of the Chl + Wm intergrowths in
sample lm09–37. (h) Plain Polarized Light (PPL) image of the Wm-bearing metagreywacke sa14–2.
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crenulation cleavage domains, folded at its turn. Oxides constitute aggregates with irregular borders,
oriented in the main foliation, while the organic-rich material is localized in the microfolds hinges or in
lenticular layers (e.g., Figure 6e).

In the Devonian paraautochtonous sedimentary units of the Sanjiang sector (e.g., sample sa14-2) only one
crenulation cleavage is observed superimposed to the S0. The main cleavage is underlined by elongated
grains of 50–100 μm of white mica, organic-rich material and quartz grains affected by bulging
recrystallization. This cleavage wraps nodules of rounded quartz grains (of 50–100 μm) which define
eye-shaped structures sheared with a top-to-ESE sense of shear (Figure 6f). No chlorite was observed in
this sample.

In the Sinian sediments roofing the Pengguan massif (samples lm230 and lm09-37), rocks are the less
deformed, metamorphosed under greenschist facies conditions with chlorite developing along the main
cleavage and in fractures of few microns in size in association with epidote and white mica (Figure 6g). In
sample lm09-37 Chl + Wm intergrowths develop in large (500–800 μm) flakes among Qz, Fs (±Ap; Figure 6h).

4.2. The Southern LMS

Among samples collected in the southern LMS for thermobarometric purposes, ba14-15 and ba15-12 belong
to the crystalline basement. Sample ba14-15 is a deformed metagranite where the magmatic assemblage of
Fs + Pl + Qz + Bt is overprinted by secondary white mica stretched in zones of high strain (Figure 7a). Feldspar
is partly sericitized and quartz recrystallizes by bulging. The metagranite ba15-12 is mylonitic, with assem-
blage of Wm + Fs (K-fs and Ab) + Qz ± Pl ± Bt ± Ap. Two samples were collected from this outcrop. One
(ba15-12c) exhibits C-S structures; the foliation (S) is defined by elongated chlorite and tiny white mica-rich
layers, while shear planes (C) are defined by epidote (Figure 7b). Feldspar is sericitized and locally defines eyes
wrapped in the foliation. Feldspar and plagioclase show intracrystalline deformation features, including
deformation twins, patchy ondulose extinction, and subgrains with weakly defined boundaries. Large quartz
grains exhibit an ondulose extinction, subgrains parallel to microcracks and irregular grain boundaries due to
grain boundary migration (Figure 7c). Around larger grains, small grains form by bulging. The other sample of
the same outcrop, ba15-12d, shows a pervasive foliation made of submillimeter quartz grains and white mica
layers wrapping the weakly sericitized and deformed feldspar eye-shaped grains and defining a top-to-E
shearing (Figure 7d). Quartz recrystallizes by subgrain rotation in the matrix and by bulging around feldspar.

Among samples collected in the metasedimentary cover, ba15-1f represents a typical organic material-rich
sample, with an early S0-S1 cleavage deformed by a later S2 (Figure 7e). Sample ba15-10 is a deformed black
schist with pelitic layers hosting greenschist facies mineral assemblages. A pervasive foliation (S0-S1) is cross
cut by quartz veins rimmed by Chl + Wm + Qz (Figure 7f). Larger quartz grains exhibit folded inclusion trails
and subgrains. Quartz recrystallized into smaller grains by bulging and subgrain rotation. Sample ba14-14 is a
Ca-rich metagraywacke with allochtonous grains of quartz and calcite wrapped in the main foliation formed
by white mica layers and polycrystalline aggregates of quartz developed by subgrain rotation
recrystallization (Figure 7g). Microstructures show a top-to-E shearing (Figure 7g). The top-to-E shearing is
therefore associated with greenschist facies conditions.

5. Analytical and Computational Methods

The chemical compositions of the metamorphic minerals (chlorite and white mica) was analyzed to retrieve
P-T conditions of the greenschist facies metamorphism in the external units of the central LMS and in the
southern LMS. The chemical composition of metamorphic minerals related to the amphibolite facies
metamorphism has been described in detail elsewhere (Airaghi, Lanari, et al., 2017; Dirks et al., 1994;
Worley & Wilson, 1996) and is beyond the scope of this study.

Analyses of chlorite and white mica in samples lm230, lm09-37, sa14-2 (central LMS), and ba14-14, ba15-12,
and ba15-10 (southern LMS) were acquired with a JEOL JXA-8230 electron probemicroanalyzer at Institut des
Science de la Terre (ISTerre, Grenoble). Accelerating voltage was fixed at 15 keV with beam current of 12 nA
and beam size of 1 μm. X-ray maps in samples ba15-12d were acquired at 15 keV, 100 nA, with a dwell time of
200 ms. Maps were quantified using the program XMapTools 2.3.1 (Lanari et al., 2014).
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Figure 7. Photomicrographs of samples collected in the southern LMS. (a) Plain Polarized Light (PPL) image of white mica layers in metagranite ba14–15. (b) C-S
structures in sample ba15–12 from the crystalline basement. (c) PPL image of quartz subgrains and recrystallization by bulging in sample ba15–12c. (d) PPL image
of feldspar grains wrapped in the white mica-bearing S2 cleavage defining the main foliation. (e) Organic material-rich sample showing a S1 and S2 cleavage.
(f) Chlorite and white mica assemblage in the black schist ba15–10. (g) White mica-bearing cleavage wrapping an allochthonous feldspar grain in sample ba14–14.

10.1029/2018TC005005Tectonics

AIRAGHI ET AL. 4666



RSCM thermometer (Beyssac et al., 2002) was used to estimate themaximum temperature (Tmax) experienced
by the organic material-rich samples in order to provide an image of the paleotemperature at the scale of the
belt. Ten to 15 spectra were acquired per sample using a Renishaw InVia Reflex microspectrometer (Paris,
ENS) with a 514-nm Spectra Physics diode laser in circular polarization and processed them with the
software Peakfit.

RSCM was combined with the multiequilibrium thermobarometry based on the thermodynamic properties
and solid solutions models of Vidal et al. (2005, 2006) and Dubacq et al. (2010) to model the P-T conditions
of the high variance assemblages involving Chl + Wm + Qz + H2O in the samples lm230, lm09-37, sa14-14,
ba15-12, and ba14-14, following the procedure described by Airaghi, de Sigoyer, et al. (2017) and Lanari
et al. (2012). Metamorphic conditions were estimated from the intersection between the P-T equilibrium
curves calculated for white mica and (1) the T calculated for Chl in textural equilibrium (lm09-37 and
lm230), or (2) the T estimated for Chl with the thermometer of Massonne and Schreyer (1987; sample
ba15-10) or the (3) Tmax estimated with the RSCM (sa14-2) under the hypothesis that metamorphic white
mica reequilibrated at the temperature peak. The same approach was used to evaluate P conditions of white
mica growth from published chemical compositions of white mica collected in the mylonitic basement of the
southern LMS by Tian et al. (2016; samples BX118 and BX127). When chlorite was not observed in the
assemblage, reference temperature was fixed at 350-400 °C, based on Qz and Fsp deformation textures.

Two samples (ba14-14 and ba14-15) from the southern LMS were selected for in situ 40Ar/39Ar dating on
white mica to constrain the timing of the greenschist facies metamorphism. The age of metamorphism in
the central LMS has already been constrained (Airaghi, de Sigoyer, et al., 2017, Airaghi et al., 2018). The in situ
40Ar/39Ar dating was done by UV laser ablation on polished 300-μm-thick sections cut mirror-like from the
ones used for petrological observations. Samples were dated at the Open University, UK, following the
procedure described by Airaghi et al. (2018) and detailed in the supporting information. The fact that
chemical heterogeneities in white mica may be smaller than the laser spot was taken into account and
discussed below. Age uncertainties on the isotopic measurements are reported to 1σ. Only analyses showing
no contamination by calcite or chlorine-bearing phases (checked with 38Ar/39Ar and 37Ar/39Ar, see Table S1)
were considered.

6. P-T-t Results
6.1. Chemical Composition of Metamorphic Minerals

Representative chemical analyses of metamorphic minerals are reported in Table 1 and Figure 8. In samples
lm09-37, lm230 and sa14-2 from the central LMS, the white mica exhibits a homogeneous chemical compo-
sition. Among them, white mica in sa14-2 is the one that exhibits the lowest Si4+ content and XMg. In the crys-
talline basement of the southern LMS (sample ba15-12), compositional maps reveal the existence of two
chemical groups of white mica (dominant muscovite composition of 50–70%, Figure 8a) occupying different
microstructural sites. A Ti-rich, Fe-rich white mica is observed in the core of the white mica-bearing layers,
along microcracks crossing the relicts of ilmenite. This group (Wm1) shows the highest Si4+, Ti4+ contents
and the lowest XMg (Figure 8a and Table 1). Si4+ progressively decreases from the core to the rim of the white
mica-bearing layer (Figure 8a). The second compositional group of white mica (Wm2), with lower Si4+, Ti4+

contents wraps the Wm1 grains and forms the rims of the white-mica-rich layers. In sample ba15-10 and
ba14-14 (metasedimentary cover) white mica and chlorite exhibit a homogeneous chemical composition
within each sample (Table 1), with white mica in sample ba14-14 exhibiting higher Si4+ and lower XMg than
white mica in sample ba15-10 (Figure 8a). Chlorite also exhibits a homogeneous composition within each
sample (Figure 8b). The lowest Si4+ and highest XMg is measured in chlorite of sample ba14-14 (Figure 8b).

6.2. Thermobarometric and Geochronological Results

The 49 new maximum temperatures obtained by RSCM are summarized Table S1 and integrated to existing
temperatures in Figures 9a and 9b. Three NW-SE oriented profiles perpendicular to the WF and BF were
realized in the central LMS (were the density of samples was the highest) in order to track the temperature
differences across the major structures. Samples collected in the Jiuding Nappe were projected along the
profile of the North Tonghua transect (profile 2 in Figure 9a) and integrated to data from Airaghi, Lanari, et al.
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(2017). Samples of the Sanjiang sector were integrated to temperatures obtained by Robert, Pubellier, et al.
(2010) in the Gengda area (Figure 9a and profile 3 in Figure 9a).

In the hanging wall of the WSZ Tmax range between 502 and 619 °C (±30 °C) with few localities showing Tmax

between 470 and 481 °C. Samples that experienced the highest Tmax of 594–619 °C are located in the
Devonian series along the Shapai transect. In all profiles of the hanging wall of the WF, isotherms define
peaks, with systematic temperature variations of 30–50 °C (above the thermometer uncertainty), drawing a
series of antiforms and synforms progressively tightened approaching the WF (e.g., profile 3 in Figure 9a).
Close to the WF, samples show Tmax > 500 °C despite a mineral assemblage typical of the greenschist facies
conditions. Along all transects, Tmax sharply decrease to ~150 °C across the WSZ: it does not exceed 380 °C
(±30 °C) in its footwall. The temperature jump is sharp and restrained to a band few meters to few kilometers
wide. A thermal jump of ~50 °C is also observed across the BF, where Tmax decrease from 350–380 °C
(hanging wall) to <330 °C in the foreland belt (Figure 9a). In the metasedimentary cover of the southern
LMS Tmax do not exceed 394 °C ± 30 °C and no major temperature jumps are observed across the faults along
the studied transect (Figure 9b and Table S1).

P-T equilibrium conditions for sample lm09-37 and lm230 yield at 300 ± 30 °C, 8 ± 1 kbar and 300 ± 30 °C,
7 ± 1.5 kbar, respectively (Figure 10a), while sample sa14-2 shows a lower pressure of 4.5 ± 2 kbar for
RSCM temperatures of 340 ± 30 °C (Figure 10b). In the Baoxing crystalline basement (sample ba15-12) P-T
conditions yield at 360 ± 30 °C, 6 ± 2 kbar. Wm1 plot at slightly higher pressure than Wm2 for the same
temperature range (Figure 10c). P-T estimates for white mica analyses from Tian et al. (2016) provide
consistent P-T results (Figure 10d) at 6.5 ± 3 kbar, with the highest density of analyses at 6 ± 1 kbar,
350–400 °C. The P-map obtained with the barometer of Massonne and Schreyer (1987) shows P conditions
of 7–7.5 kbar for Wm1 and of 5.5 kbar for Wm2, with intermediate values for white mica located in the

Table 1
Representative Chemical Compositions of Analyzed Metamorphic Minerals (Chlorite and White Mica)

Sample LM230 SA14-2 LM09-37 BA15-10 BA15-12c BA14-14

Longitude E 103.53 E 103.27 E 104.09 E 102.68 E 102.76 E 102.89

Latitude N 31.41 N 30.97 N 31.60 N 30.53 N 30.41 N 30.56

Wm Chl Wm Wm Chl Chl Wm1 Wm2 Wm

Mineral
SiO2 47.97 28.06 47.47 49.64 28.40 27.82 48.35 46.34 46.70
TiO2 0.32 0.04 0.17 0.40 0.32 0.02 0.80 0.30 0.58
Al2O3 28.36 17.47 32.82 25.88 18.36 23.52 26.29 30.62 27.93
FeO 5.33 25.21 1.84 5.22 26.55 16.40 5.22 4.49 7.34
Fe2O3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MnO 0.00 0.47 0.00 0.03 0.56 0.10 0.03 0.02 0.03
MgO 2.89 16.45 1.43 2.95 14.30 20.18 2.10 1.49 1.10
CaO 0.00 0.09 0.03 0.16 0.06 0.01 0.01 0.01 0.00
Na2O 0.09 0.03 0.12 0.08 0.01 0.02 0.11 0.08 0.17
K2O 8.80 0.36 10.29 9.47 0.25 0.02 10.77 11.31 10.63
Total 93.76 88.19 94.16 93.83 88.82 88.09 93.68 96.66 94.48
Cations
Si 3.28 2.94 3.19 3.30 2.97 2.76 3.35 3.17 3.24
Ti 0.02 0.00 0.01 0.01 0.03 0.00 0.04 0.02 0.03
Al 2.28 2.16 2.60 2.14 2.26 2.75 2.15 2.47 2.29
Fe 0.30 2.21 0.10 0.42 2.32 1.36 0.30 0.26 0.43
Fe3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mn 0.00 0.04 0.00 0.01 0.05 0.01 0.00 0.00 0.00
Mg 0.29 2.57 0.14 0.42 2.23 2.98 0.22 0.15 0.11
Ca 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00
Na 0.01 0.01 0.02 0.01 0.00 0.00 0.01 0.01 0.02
K 0.77 0.05 0.88 0.64 0.03 0.00 0.95 0.99 0.94
Oxygens 11 14 11 11 14 14 11 11 11
XMg 0.49 0.54 0.58 0.50 0.49 0.69 0.42 0.37 0.21

10.1029/2018TC005005Tectonics

AIRAGHI ET AL. 4668



middle of the Wm-bearing layer (at T = 400 °C, Figure 10e). In the sedimen-
tary cover (samples ba15-10) T conditions for chlorite yield at 350 ± 20 °C.
In this temperature range, P conditions for the Wm-bearing assemblage in
sample ba14-14 can be estimated at 3 ± 1 kbar, 350 ± 20 °C (Figure 10f).

Geochronological results for samples ba15-12 and ba14-14 are reported in
the insets of Figures 10c and 10f and in Table S2. White mica in sample
ba14-15 (basement) yielded ages between 74.6 ± 6.1 and 58.8 ± 5.7 Ma.
White mica in metasedimentary sample ba14-14 yielded younger ages
ranging from 52 ± 2 to 33 ± 1.3 Ma.

6.3. Interpretation of P-T-t Results

The range of the new RSCM Tmax obtained for the internal units of the
central LMS (>500 °C) is in line with the amphibolite facies metamorphic
minerals (St, Grt) observed in the peak mineral assemblage, with
temperatures reported by Robert, Pubellier, et al. (2010) and Airaghi,
Lanari, et al. (2017) and with the peak metamorphic conditions estimated
in Silurian and Devonian units along the South Tonghua, North Tonghua,
Shapai and Gengda areas (north of the Sanjiang transects) with
conventional barometry and thermodynamic modeling (Airaghi, Lanari,
et al., 2017; de Sigoyer et al., 2011; Robert, 2011; Worley & Wilson, 1996).
No kyanite was observed in the metasedimentary cover around the
Xuelongbao massif, in contrast to the observations of Worley and Wilson
(1996). The P T conditions obtained with the multiequilibrium approach
for the metasedimentary cover in the external units of the central LMS
are consistent with the observed greenschist facies peak mineral
assemblage and are in line with temperatures obtained by RSCM.

In the southern LMS, P-T conditions are also consistent with RSCM Tmax

and the observed greenschist facies mineral assemblage. Temperature
estimates in the basement are compatible with the temperature range
of ~300–400 °C suggested by the ductile deformation of quartz and quartz

recrystallization mainly by bulging or subgrain rotation (Passchier & Trouw, 2005; Stipp et al., 2002). The
chemistry of white mica in sample ba15-12 is very similar to the one measured by Tian et al. (2016). The
Ti-enrichment of the Wm1 might be due to its being grown from a Ti-rich biotite. Pressure conditions
obtained for Wm1 with the Phg-Qz-H2O modeling approach are generally close to pressure conditions
obtained for Wm2, although multiple analyses of Wm2 plot at lower pressure values. In contrast, the P
map obtained with the barometer of Massonne and Schreyer (1987) shows higher pressures for Wm1
(~7.5 kbar) than for Wm2 (~4 kbar). These observations may suggest decompression (exhumation) during
the greenschist facies overprint and the associated deformation in the crystalline basement.

The T estimates in both the basement and in the sedimentary cover of the southern LMS are lower than the
nominal closure T for Ar in muscovite (425 °C for a 100 μm radius grain, a cooling rate of 10 °C and
P = 10 kbar; Harrison et al., 2009): 40Ar/39Ar dates are therefore interpreted as representing white mica
crystallization ages. Since the chemical heterogeneities within white mica (10–20 μm) are smaller than
the spatial resolution of the laser used for the in situ dating (~65 μm), the calculated 40Ar/39Ar age might
be affected by processes other than local in situ K-Ar decay (e.g., Airaghi et al., 2018). In the Baoxing basement,
the oldest ages (68–74.5 ± 6.1 Ma) could correspond to the relicts of Wm1 and the youngest ages
(58–60 ± 9 Ma) to the growth of Wm2, although the influence of the white mica grain size and deformation
on the age dispersion cannot be discarded. These age intervals are consistent with the white 40Ar/39Ar white
mica and biotite ages obtained by Tian et al. (2016) in the basement of the southern LMS.

In the metasedimentary rocks (ba14-14), the white mica ages are younger (<55 Ma) than those in the
basement. Although further investigations would be required to precisely assess the timing of the
tectonometamorphic evolution of the sedimentary cover, our results clearly show that the greenschist facies
metamorphism in the southern LMS is Late Cretaceous-Cenozoic in age.

Figure 8. Si4+ versus XMg diagram of whitemica (a) and chlorite (b) chemical
compositions analyzed in samples collected for thermobarometric proposes
(see text for details). The Si4+ of white mica 1 (Wm1) in sample ba15–12c
progressively decreases from the core to the rim of the white mica-bearing
layers to reach the composition of Wm2 (black arrow).
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7. Discussion
7.1. Structural and P-T-t Evolution of the Central LMS

A very constant deformation scheme is observed in the internal metasedimentary series of the central LMS, at
different spatial scales. It includes D1, D2, D3 ductile deformation phases, and a D4 brittle-ductile phase of
tilting, in line with the deformation phases observed by Harrowfield and Wilson (2005) in the Danba area
and in the southern LMS. At a first-order level, therefore, the internal metasedimentary units experienced a
similar deformation history. Folds tighten approaching the crystalline massifs, suggesting that the
Xuelongbao, Pengguan, and Tonghua massif acted as rigid buttresses during the D2 deformation phase,
although they were not yet exhumed. D2 is only observed in the metasedimentary cover and is coeval with,
or postdated, the peak T as suggested by the folded shape of the isotherms obtained by RSCM along the
transects in the internal units and the fact that magmatic intrusion in the SPG are either deformed or crosscut
earlier structures (Figure 9a). In all studied transects, similar peakmetamorphic mineral assemblages are asso-
ciated with similar microstructures, suggesting that the metamorphic peak (9–12 kbar, 530–580 °C, Airaghi,
Lanari, et al., 2017, Airaghi et al., 2018) occurred coevally in the entire internal metasedimentary units, at

Figure 9. Maximum temperatures (Tmax) obtained with the RSCM thermometry. (a) Distribution of Tmax in the geological map of central (a) and southern
(b) Longmen Shan. Black lines 1, 2, 3, and 4 indicate profiles on the right-hand side. WF: Wenchuan fault, BF: Beichuan fault, WuF: Wulong fault. In the profiles, the
Tmax plotted in a temperature versus distance to the WF (1, 2, 3) or WuF (4). The uncertainty reported on Tmax is the standard deviation. Results from the Gengda
area (black frame along profile 3) are from Robert, Pubellier, et al. (2010). The profile between samples in the hanging and footwall of the Beichuan fault is
extrapolated (dashed black line). Dashed red lines in profile 3 represent the location of the different branches of the WF and BF.
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ca. 200–180 Ma (Airaghi et al., 2018; Huang, Maas, et al., 2003; Weller et al., 2013), lasting over 20 Ma. All the
D3 structures observed both in the basement and in the metasedimentary cover are associated with
NNE-SSW oriented structures such as F3 folds in the metasedimentary cover and top-to-SE shearing and
greenschist facies metamorphic minerals dated at Early Cretaceous (Figure 11c; Airaghi, de Sigoyer, et al.,

Figure 10. P-T-t results. (a) P-Twhite mica lines for samples lm09–37 and lm230 (sediments roofing the Pengguanmassif). Colored frames are temperatures obtained
from chlorite. Crosses indicate the estimated P-T conditions for the greenschist facies assemblage. (b) P-T conditions for sample sa14–2. (c) White mica P-T lines
for samples from the basement ba15–12 in the southern Longmen Shan. Wm1 plot at slightly higher P (or lower T) than Wm2. The inset shows the 40Ar/39Ar white
mica ages for sample ba14–15 sorted by increasing age. (c) P-T lines obtained from the chemical compositions of white mica analyzed by Tian et al. (2016) for
samples similar to ba15–12. (e) P-map obtained with the barometer of Massonne and Schreyer (1987) for a white mica-bearing layer in sample ba15–12. (f) White
mica P-lines for sample ba14–14 (sedimentary cover). Temperatures are estimated from chlorite in sample ba15–10 (bottom right inset). The top-left inset shows
40Ar/39Ar white mica ages of sample ba14–14 sorted by increasing age.
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2017; Airaghi et al., 2018). These observations deviate from the top-to-NW ductile movement documented in
the western part of the Pengguan massif along the WSZ by some previous study (Xu et al., 2008; Xue et al.,
2017). Both tectonic dynamics can, however, coexist and be consistent with a southeast thrusting during
the Early Cretaceous, resulting in the formation of basement-slice-imbricated structures (Airaghi et al.,
2018; Xue et al., 2017; this study). Furthermore, a Cretaceous reactivation is also recorded ~200 km NW of
the LMS, in the Longriba fault zone and in the Aba block (Ansberque et al., 2018; Tan et al., 2014),
suggesting that a large portion of the eastern Tibet remained coupled during Cretaceous exhumation
(Ansberque et al., 2018).

In the external metasedimentary units, two and three phases of ductile deformation are observed east and
west of the WSF, respectively. In the Devonian sediments (sample sa14-2) the P-T conditions of the
greenschist facies peak assemblage (4.5 ± 2 kbar, 340 ± 30 °C) are close to the ones of the greenschist facies
overprint observed in the internal units, suggesting that in the external domain this late event might be the
only recrystallization event. The P-T conditions at 300 ± 30 °C, 8 ± 1 kbar obtained in the Sinian sediments
roofing the Pengguan massif (samples lm230 and lm09-37) are in good agreement with the P-T estimates
obtained for the Pengguan massif (Airaghi, de Sigoyer, et al., 2017). Assuming a density for the crust of
2700 kg/m3 and the lithostatic pressure hypothesis, these results imply that the Devonian sediments were
exhumed from a depth of ~15 km and were partially thickened and detached over the basement
(Pengguan massif), while the Sinian sediments experienced a coherent metamorphic history with the

Figure 11. Interpretative cross sections of the tectonic evolution of the Longmen Shan from the Paleozoic to the present. The left insets show a regional view of the
geodynamics at each step, evinced from structural observations and from the reconstructions of Roger et al. (2008). The shortening during the Triassic-Jurassic is only
qualitative. Yellow dots: position of the highest metamorphic rocks at each stage. White arrows: shortening direction. WF: Wenchuan fault, BF: Beichuan fault, GF:
Guanxian fault, SPG: Songpan-Garze, YI: Yidun terrane. (a) Passive margin at the Paleozoic. (b) Late Triassic-Early Jurassic compression and exhumation. The
orientation of the D2 structures are regionally compatible with top-to-south thrusting orientation related to the N-S directed closure of the northern branch of the
Paleotethys and with the contemporary clockwise rotation of the South China block (inset; e.g., Harrowfield & Wilson, 2005; Q.-R. Meng et al., 2005; Deng, 2007).
(c) Early Cretaceous reactivation. The orientation of the structure is regionally compatible with the E-W compression (inset). (d) Schematic cross section of the present
structure of the belt. SPG = Songpan-Garze.
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Pengguan massif and were exhumed from ~20-km depth. No ages are yet available for the metamorphic
peak in the metasedimentary external units. Structural and sedimentary investigations in the foreland basin
indicate, however, that the deformation phase related to thickening reached the front of the LMS by the Late
Triassic (e.g., Chen &Wilson, 1995; Li et al., 2003; Li, Yan, et al., 2014; Robert et al., 2011), in agreement with the
ZFT at 180 Ma obtained by Arne et al. (1997) at the front of the belt and with the timing of the klippen empla-
cement (Zheng et al., 2014).

The metamorphic jump between the internal SPG metasedimentary units and the external units and the
basement implies the existence of a major decollement between the two domains, at the time of the SPG
nappe emplacement (Late Triassic-Early Jurassic, Figures 11b and 11c). Field observations suggest the exis-
tence of sub-parallel thrusts within the SPG metasedimentary units contemporaneous with the medium-
grade metamorphism, structurally rooted in a decollement (or ductile crustal layer) located in the Silurian
schists (at the base of the post-rift sediments). The predominant structural style in the LMS during the Late
Triassic-Early Jurassic was therefore thin-skinned (Figure 11b). The record of the only D3 structures in the
crystalline basement attest of the onset of the thick-skinned deformation at the Early Cretaceous and the
re-activation of the Beichuan and WFs (Figure 11c). The thick-skinned deformation became progressively
dominant across the entire central LMS (Figure 11d), as suggested by the recent 2008 Wenchuan earthquake
nucleating in a basement fault that partly reactivated as a thrust.

7.2. Structural and P-T-t Evolution of the Southern LMS

In the southern LMS, only one major ductile deformation phase is observed and is defined by field structures
indicating a top-to-east (top-to-the foreland) shearing associated with greenschist facies metamorphism, in
contrast with the Late Cretaceous to Paleogene, top-to-west (top-to-the hinterland) shearing previously
proposed (Tian et al., 2016). However, these divergent observations can coexist as documented in the
Pengguan massif during the Early Cretaceous (Xue et al., 2017). They are both compatible indeed with a
phase of shortening and crustal thickening of the basement and the sedimentary cover. Shortening and crus-
tal thickening stage is also in line with the presence of Late-Cretaceous-early Paleogene basins—interpreted
as foreland basins—at the front of the southern part of the belt (Guo et al., 1996) and with the absence of an
extensional basin filled with Paleogene sediments in the hanging wall of the major tectonic structures.

P-T conditions of the greenschist facies assemblage in the crystalline rocks (360 ± 30 °C, 6 ± 2 kbar) suggest
that the basement in the hangingwall of theWuF was exhumed from ~20-km depth (assuming the lithostatic
pressure hypothesis with a crustal density of 2700 kg/m3), in agreement with the P-T-z conditions obtained in
the Pengguan and Tonghua massifs (Airaghi, de Sigoyer, et al., 2017; Airaghi et al., 2018). The
metasedimentary cover was instead exhumed from ~10-km depth (~3 kbar).

The age of the greenschist facies overprint in the basement of ca. 80–60 Ma is in very good agreement with
the 40Ar/39Ar ages obtained by Tian et al. (2016) and with the 40Ar/39Ar biotite ages obtained by Zhou et al.
(2008) in the basement of the Danba massif (Figure 12). Hence, in the southern LMS—as in a larger part of
the southern margin of the eastern Tibetan plateau—the basement was actively involved into metamorph-
ism and deformation at the Late Cretaceous, while the sedimentary cover records a prolonged deformation
event until the Eocene. At this time, the shortening and crustal thickening was possibly triggered by the
effects of the India-Asia convergence and the late subduction of the Tethys, first perceived from the
southern LMS northwestward to the Danba area, as also suggested by thermochronological data (e.g.,
Cook et al., 2013; Kirby et al., 2002).

7.3. Tectonic Implications
7.3.1. The Long-Term Thrusting Component of the Major Faults
The fact that the sharpest metamorphic jumps of ~5–6 kbar, 150–200 °C, and ~50 °C observed across the WF
and BF, respectively, are Mesozoic in age suggests that these faults were already major active lithospheric
boundaries during the Mesozoic. The record of Early Jurassic metamorphism in the internal Tonghua
crystalline massif but not in the external Pengguan massif (Airaghi, de Sigoyer, et al., 2017; Airaghi et al.,
2018) also indicates that the WF constituted a major tectonic boundary already at that time. The distribution
of metamorphic rocks in the central LMS therefore attests of a significant vertical component in the long-term
functioning of the BF and WF, with a minimum cumulated vertical offset for the two faults of ~20 km (Airaghi,
de Sigoyer, et al., 2017). In the southern LMS the basement is also exhumed from ~20-km depth, attesting of
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the long-term thrusting movement also of the WuF. Note that the amount of strike-slip component of the
deformation during the Late Triassic-Early Jurassic is difficult to evaluate with the petrological approach
used in this study and thus must remain, for the present, unquantified.
7.3.2. Continuity Between the WF and BF and Faults of the Southern LMS
Our petrological and structural approach reveals that the BF separates low-grade metamorphic
metasedimentary units to the west from non-metamorphic units to the east and favors the exhumation of
the basement (Pengguan massif) in its hanging wall (Figure 11d). A similar configuration is observed for
the Xiaoguanzi fault in the southern LMS (Figure 9b). These faults might be therefore considered as
structurally equivalent. By contrast, the WF corresponds (1) to a Late Triassic-Early Jurassic zone of
decollement separating the medium-grade metasedimentary units from the base of SPG series to the west
(internal units) and the low-grade metasedimetary units to the east (external units) where the basement is
not exhumed or (2) to the tectonic boundary that limits the slices of the basement without any major
metamorphic jump, where the basement is exhumed (e.g., Tonghua massif; Figures 9a and 11d). Using a
petrological approach, it is therefore possible to distinguish the SPG decollement level responsible for the
metamorphic jump between internal and external units from theWF sensu stricto that favors the exhumation
of the basement in its hanging wall. In the southern LMS, the WuF—often considered as the southern prolon-
gation of the WF—also favors the exhumation of the basement in its hanging wall, but it never corresponds
to the limit between different metamorphic domains. Hence, the WuF cannot be considered as the southern
prolongation of the SPG decollement level. This level may instead deviate from the central LMS westward, to

Figure 12. Map of the maximum temperatures experienced by the metasedimentary units along the entire Longmen Shan, from a compilation of newly acquired
and previously published (Robert, Pubellier, et al., 2010; Airaghi, Lanari, et al., 2017) RSCM Tmax. WF: Wenchuan fault, BF: Beichuan fault, GF: Guanxian fault, WuF:
Wulong fault, XF: Xiaoguanzi fault, SF: Shuangshi fault, Ka: Kanding. Filled black contours: crystalline massifs (basement). Dashed black circle: unbroken
segments between the 2008Mw 7.9 Wenchuan and 2013Mw 6.6 Lushan seismic ruptures (e.g., Z. Wang et al., 2015). GS: Greenschist facies metamorphism. Numbers
in boxes are ages from this study (yellow) and from literature (white). Ages linked to the crystallization of metamorphic minerals along S2 cleavage during the
regional amphibolite-facies metamorphism are as follows: 1: U-Pb monazite and Sm-Nd garnet ages of Huang, Maas, et al. (2003), 2: 40Ar/39Ar amphibole and
biotite ages of Zhou et al. (2008), 3: U-Pbmonazite ages of Weller et al. (2013), 6: 40Ar/39Ar biotite and U-Pb allanite ages (metasediments) of Airaghi et al. (2018). Ages
dating the greenschist facies metamorphism are as follows: 4: 40Ar/39Ar muscovite and biotite ages of Tian et al. (2016), 5: 40Ar/39Ar muscovite ages of Airaghi,
de Sigoyer, et al. (2017), 6: 40Ar/39Ar muscovite (basement).
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join the Danba dome where medium-grade metamorphic rocks are exhumed (e.g., Billerot et al., 2017; Weller
et al., 2013). The petrochronological approach thus allows to better define the WF zone and its
petrological significance.
7.3.3. Different Tectonometamorphic Evolutions for the Central and Southern LMS
Structural and petrochronological data show that different tectonometamorphic features are observed
between the central and southern LMS. The metasedimentary cover of the southern area does not clearly
record, for example, three stages of ductile deformation as observed in the central areas. Furthermore, the
P-T conditions of the metasedimentary cover in the south are close to the ones observed in the external units
of the central LMS but the amphibolite-facies metamorphism that characterizes the internal units of the
central LMS is not observed in the south (Figure 12). This suggests that the southern LMS never experienced
the overthrusting of the thickened SPG units toward the external part of the belt. The different metamorphic
domains (blue and red in Figure 12) of the central and southern LMS are separated by a 30- to 40-km-wide area
where no metamorphic rocks are observed (T ≪ 330 °C, white in Figure 12). This non-metamorphic zone
extends from the front of the belt, westward within the SPG terrain and corresponds to the area where zircon
fission track ages have not been reset since the Triassic (Tan et al., 2014). Deep metamorphic units were there-
fore never exhumed within this area.

Differences in the timing of metamorphism between the central and southern LMS are also observed. While in
the south the greenschist facies metamorphic event affecting the basement is younger than 80 Ma (yellow
boxes in Figure 12), in the central LMS it is dated at 140–120 Ma (white boxes in Figure 12). This suggests that
while the central LMS experienced a phase of thickening and exhumation during the Early Cretaceous, the
southern LMS did not, or the Early Cretaceous event is there completely overprinted by the Cenozoic history.
During the Cenozoic, the central LMS was therefore already at a higher structural level (below closure T of ZFTs)
while the southern LMS experienced thickening and deformation. This is consistent with the stratigraphic
record in the foreland Sichuan basin showing a migration of the depocenter northward during the Early
Cretaceous and southward during the Cenozoic (e.g., Burchfiel et al., 1995; Q.-R. Meng et al., 2005). Hence,
the central and southern LMS underwent different tectonometamorphic histories since the Early Mesozoic,
that results in an along-strike metamorphic segmentation of the belt. Different portions of the belt were there-
fore re-activated at different times, maybe due to a difference in thematuration of the associated fault systems.
7.3.4. Implications for the Present Tectonics
The relocation of the recent earthquake epicenters shows that the 2008 Mw 7.9 Wenchuan and 2013 Mw 6.6
Lushan earthquakes (green stars in Figure 12) nucleated in areas where the crystalline basement crops out
(filled black lines in Figure 12). The epicenters are separated by an as-yet unbroken segment, where recent
earthquakes did not propagate, whose size broadly corresponds to the size of the area where no
metamorphic rocks are observed (dashed black line and white area in Figure 12). This metamorphic
segmentation might be controlled by tectonic structures (possibly inherited from the Paleozoic passive
margin of the South China craton) that—on the base of the contours of metamorphic discontinuities—
should be SE-NW oriented, subparallel to the Xianshui He fault. The lateral ramp of the RFBT (below the
Shuangshi fault) that limited the propagation of the Lushan earthquake northeastward into the unbroken
segment (Li, Jia, et al., 2014) might represent one of these structures. Inherited structures responsible for
the along-strike metamorphic segmentation in the LMS might therefore still affect the present dynamics.
They might also partially explain the present crustal structure of the belt imaged by seismic tomography at
~ 20 km depth (Z. Wang et al., 2015). Our tectono-metamorphic approach thus offers new and
complementary constraints to understand the importance of the Mesozoic geological inheritance in the
present tectonics of the LMS.

8. Conclusions

1. New petrological observations in the central LMS show a metamorphic jump of ~50 °C (~3 kbar) across
the BF. A second metamorphic jump is observed across the SPG decollement zone (locally superposed
to the WF) of ~150–200 °C, 5–6 kbar between the metasedimentary rocks of the internal units of the
central LMS (T > 500 °C) and metasedimentary rocks in the external units of the belt (T < 400 °C). The
SPG decollement limiting the different metamorphic provinces can therefore be distinguishing from
the WF sensu stricto that favors the exhumation of the Xuelongbao and Tonghua crystalline massifs in
its hanging wall and across which no major metamorphic jumps are observed.
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2. The metamorphic jumps across the Beichuan, Wenchuan, and the SPG decollement zone attest to their
long-term thrusting components and show that they already constituted major crustal boundaries from
the Late Triassic-Early Jurassic.

3. In the internal metasedimentary units of the central LMS three phases of ductile deformation are
observed: D1, D2 related to top-to-SE shearing, and D3 related to top-to-E shearing. In the southern
LMS only one major ductile deformation phase related to top-to-ESE shearing is observed.

4. The equilibrium P-T conditions of the greenschist metamorphic assemblage in the external units of the
central LMS yield at 300 ± 30 °C, 7�8 ± 1 kbar in the Sinian sediments remained attached to the
Pengguan crystalline massif and at 340 ± 30 °C, 4.5 ± 2 kbar in the paraautochthonous Devonian
sediments.

5. No higher than greenschist facies metamorphic conditions were reached in the basement and in the
metasedimentary cover of the southern LMS. Peak conditions of 360 ± 30 °C and 6 ± 2 kbar were reached
at ca. 80–58Ma in the basement and 350 ± 30 °C, 3 ± 1 kbar at ca. 55–33Ma in themetasedimentary cover.

6. In the long term, the WuF cannot be considered in continuity with the SPG decollement zone separating
the internal and external units in the central LMS.

7. The first comprehensive maps of paleotemperatures for the entire LMS shows an along-strike meta-
morphic segmentation between the central and southern LMS. The amphibolite facies metamorphism
related to the thickening and thrusting of the SPG metasedimentary rocks is only observed in the central
LMS, while the greenschist facies overprint observed in the basement is dated at ca. 140–120 Ma in the
central LMS and <80 Ma in the southern LMS. The central and southern LMS therefore underwent differ-
ent tectonometamorphic histories since the Mesozoic maybe due to differences in the maturation of the
associated fault systems.

8. The metamorphic segmentation and the geographic distribution of the outcropping basement seem to
mime the locations of the recent earthquake epicenters, while the area where no long-term exhumation
is observed well corresponds to the width of the unbroken segment where the rupture did not propagate.
The inherited structures responsible for the long-term along-strike metamorphic segmentation might
therefore still affect the present tectonics of the belt. Farther investigations on the reasons of the meta-
morphic segmentation are now required.
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