1,568 research outputs found

    Contemporary Understanding of Ethics in clinical Research and Publication in India

    Get PDF
    Ethics, in principle, is what distinguishes the acceptable from unacceptable. The role of ethics in biomedical research and publication has a new found growing importance in the recent times. Its initial role was merely in safeguarding the participant’s interests. The role of ethics in biomedical research has now expanded by encompassing not only the safety and integrity of subjects, but also in curbing the unlawful practices in the publication of the study material. Violation of the rules laid by the various regulatory bodies is now considered an offence. This article aims to give a crisp and concise picture of the role of ethics, various misconducts and its repercussions, in clinical study and publication in today’s time

    Pathogen-derived resistance using a viral nucleocapsid gene confers only partial non-durable protection in peanut against peanut bud necrosis virus

    Get PDF
    Genetic engineering of peanut (Arachis hypogaea L.) using the gene encoding for the nucleocapsid protein (N gene) of peanut bud necrosis virus (PBNV; genus Tospovirus, family Bunyaviridae) was used to impart resistance to bud necrosis disease in peanut (PBND), a disease for which no durable resistance is available in the existing germplasm. Over 200 transgenic lines of peanut var. JL 24 were developed for which integration and expression of the transgenes was confirmed by PCR, Southern hybridization, RT-PCR and western blot analysis. The T1 and T2 generation transgenic plants were assayed through virus challenge in the greenhouse by using mechanical sap inoculation at 1:100 and 1:50 dilutions of PBNV, and they showed varying levels of disease incidence and intensity. Greenhouse and field evaluation with T2 generation plants indicated somewhat superior performance of the three transgenic events that showed considerable reduction in disease incidence. However, only one of these events showed over 75 % reduction in disease incidence when compared to the untransformed control, indicating partial and non-durable resistance to PBND using the viral N-gen

    Development of Epoxyeicosatrienoic Acid Analogs with in Vivo Anti-Hypertensive Actions

    Get PDF
    Epoxyeicosatrienoic acids (EETs) contribute importantly to the regulation of vascular tone and blood pressure control. The purpose of this study was to develop stable EET analogs and test their in vivo blood pressure lowering effects in hypertensive rats. Using the pharmacophoric moiety of EETs, ether EET analogs were designed with improved solubility and resistance to auto-oxidation and metabolism by soluble epoxide hydrolase. Ether EET analogs were chosen based on their ability to dilate afferent arterioles and subsequently tested for blood pressure lowering effects in rodent models of hypertension. Initially, 11,12-ether-EET-8-ZE failed to lower blood pressure in angiotensin hypertension or spontaneously hypertensive rats (SHR). Esterification of the carboxylic group of 11,12-ether-EET-8-ZE prevented blood pressure increase in SHR when injected at 2 mg/day for 12 days (MAP Δ change at day 8 of injection was −0.3 ± 2 for treated and 12 ± 1 mmHg for control SHR). Amidation of the carboxylic group with aspartic acid produced another EET analog (NUDSA) with a blood pressure lowering effect when injected at 3 mg/day in SHR for 5 days. Amidation of the carboxylic group with lysine amino acid produced another analog with minimal blood pressure lowering effect. These data suggest that esterification of the carboxylic group of 11,12-ether-EET-8-ZE produced the most effective ether-EET analog in lowering blood pressure in SHR and provide the first evidence to support the use of EET analogs in treatment of cardiovascular diseases

    Progress in Classical and Quantum Variational Principles

    Full text link
    We review the development and practical uses of a generalized Maupertuis least action principle in classical mechanics, in which the action is varied under the constraint of fixed mean energy for the trial trajectory. The original Maupertuis (Euler-Lagrange) principle constrains the energy at every point along the trajectory. The generalized Maupertuis principle is equivalent to Hamilton's principle. Reciprocal principles are also derived for both the generalized Maupertuis and the Hamilton principles. The Reciprocal Maupertuis Principle is the classical limit of Schr\"{o}dinger's variational principle of wave mechanics, and is also very useful to solve practical problems in both classical and semiclassical mechanics, in complete analogy with the quantum Rayleigh-Ritz method. Classical, semiclassical and quantum variational calculations are carried out for a number of systems, and the results are compared. Pedagogical as well as research problems are used as examples, which include nonconservative as well as relativistic systems

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð„with constraintsð ð ð„ „ ðandðŽð„ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

    Get PDF
    A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at root s = 8 TeV. The data correspond to an integrated luminosity of 19.7 fb(-1). The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t (t) over bar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95 confidence level for the product of the production cross section and branching fraction sigma(gg -> X) B(X -> HH -> b (b) over barb (b) over bar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with amass scale Lambda(R) = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV

    Development and validation of HERWIG 7 tunes from CMS underlying-event measurements

    Get PDF
    This paper presents new sets of parameters (“tunes”) for the underlying-event model of the HERWIG7 event generator. These parameters control the description of multiple-parton interactions (MPI) and colour reconnection in HERWIG7, and are obtained from a fit to minimum-bias data collected by the CMS experiment at s=0.9, 7, and 13Te. The tunes are based on the NNPDF 3.1 next-to-next-to-leading-order parton distribution function (PDF) set for the parton shower, and either a leading-order or next-to-next-to-leading-order PDF set for the simulation of MPI and the beam remnants. Predictions utilizing the tunes are produced for event shape observables in electron-positron collisions, and for minimum-bias, inclusive jet, top quark pair, and Z and W boson events in proton-proton collisions, and are compared with data. Each of the new tunes describes the data at a reasonable level, and the tunes using a leading-order PDF for the simulation of MPI provide the best description of the dat

    MUSiC : a model-unspecific search for new physics in proton-proton collisions at root s=13TeV

    Get PDF
    Results of the Model Unspecific Search in CMS (MUSiC), using proton-proton collision data recorded at the LHC at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1), are presented. The MUSiC analysis searches for anomalies that could be signatures of physics beyond the standard model. The analysis is based on the comparison of observed data with the standard model prediction, as determined from simulation, in several hundred final states and multiple kinematic distributions. Events containing at least one electron or muon are classified based on their final state topology, and an automated search algorithm surveys the observed data for deviations from the prediction. The sensitivity of the search is validated using multiple methods. No significant deviations from the predictions have been observed. For a wide range of final state topologies, agreement is found between the data and the standard model simulation. This analysis complements dedicated search analyses by significantly expanding the range of final states covered using a model independent approach with the largest data set to date to probe phase space regions beyond the reach of previous general searches.Peer reviewe

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe
    • 

    corecore