121 research outputs found

    Phylogenetic Relationships Among Four Western Atlantic Cynoscion Species Based on DNA Sequences From 11 Nuclear Introns, Two Mitochondrial Genes, and Genotypes From 32 Microsatellite Markers

    Get PDF
    Four species of Cynoscion occur in the waters off the Atlantic and Gulf coasts of North America, where they are targeted by commercial and recreational fisheries. Previous studies have not resolved the phylogenetic relationships of the four species, largely due to uncertainty as to whether the spotted seatrout, Cynoscion nebulosus, or silver seatrout, Cynoscion nothus, is the most divergent member of the North American assemblage. This study used DNA sequences from the nuclear and mitochondrial genes and multilocus genotypes from microsatellite markers to infer relationships among these species. Together, these three techniques strongly suggest that the weakfish, Cynoscion regalis, and the sand seatrout, Cynoscion arenarius, are the most closely related species, and that C. nothus is the most divergent from all the others

    Stock boundaries for spotted seatrout (Cynoscion nebulosus) in Florida based on population genetic structure

    Get PDF
    The Spotted Seatrout Cynoscion nebulosus (Sciaenidae) is an estuarine fish of economic importance, commercially and recreationally, in Florida. Harvesting of this fish has been steadily decreasing since the 1950s. In the late 1980s, the Florida Fish and Wildlife Conservation Commission (FWC) implemented a major effort to stop the decline in landings and classified the species as restricted, regulating the importation, transportation, and possession of these fish. Over the period 1981-2012, combined recreational and commercial landings of Spotted Seatrout have been flat, primarily because of regulation of the fishery. In the absence of a well-resolved population genetic structure for the Spotted Seatrout, the FWC has relied on coastal watershed features and reproductive differences among estuaries to demarcate regions for management purposes. ... In the present study we identify three genetic stocks of Spotted Seatrout in Florida waters, each with a unique range: 1) from the western border of Florida to Apalachicola Bay, 2) east of Apalachicola Bay through Biscayne Bay, and 3) from Sebastian Inlet to the northeast border of the state. The genetic patterns observed indicate that little if any contemporaneous reproductive exchange takes place between these stocks and that recruitment usually occurs in the natal estuary. The geographic boundaries that frame the FWC’s periodic stock assessments and other demographic evaluations of Spotted Seatrout are not a perfect match with those of the genetically identified stocks. We recommend that, in its assessments of Florida stock of the Spotted Seatrout, the FWC use the genetic stock boundaries that we describe here

    Data Descriptor: Daily observations of stable isotope ratios of rainfall in the tropics

    Get PDF
    We present precipitation isotope data (δ2H and δ18O values) from 19 stations across the tropics collected from 2012 to 2017 under the Coordinated Research Project F31004 sponsored by the International Atomic Energy Agency. Rainfall samples were collected daily and analysed for stable isotopic ratios of oxygen and hydrogen by participating laboratories following a common analytical framework. We also calculated daily mean stratiform rainfall area fractions around each station over an area of 5° x 5° longitude/latitude based on TRMM/GPM satellite data. Isotope time series, along with information on rainfall amount and stratiform/convective proportions provide a valuable tool for rainfall characterisation and to improve the ability of isotope-enabled Global Circulation Models to predict variability and availability of inputs to fresh water resources across the tropics.Fil: Munksgaard, Niels C.. James Cook University; Australia. Charles Darwin University. School of Environmental Research; AustraliaFil: Kurita, Naoyuki. Nagoya University; JapónFil: Sánchez Murillo, Ricardo. Universidad Nacional; Costa RicaFil: Ahmed, Nasir. Bangladesh Atomic Energy Commission; BangladeshFil: Araguas, Luis. International Atomic Energy Agency (iaea); AustriaFil: Balachew, Dagnachew L.. International Atomic Energy Agency (iaea); AustriaFil: Bird, Michael I.. James Cook University; AustraliaFil: Chakraborty, Supriyo. Indian Institute of Tropical Meteorology; IndiaFil: Kien Chinh, Nguyen. Center for Nuclear Techniques; VietnamFil: Cobb, Kim M.. Georgia Institute of Technology; Estados UnidosFil: Ellis, Shelby A.. Georgia Institute of Technology; Estados UnidosFil: Esquivel Hernández, Germain. Universidad Nacional; Costa RicaFil: Ganyaglo, Samuel Y.. National Nuclear Research Institute; GhanaFil: Gao, Jing. Chinese Academy of Sciences; República de ChinaFil: Gastmans, Didier. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Kaseke, Kudzai F.. Indiana University-Purdue University Indianapolis; India. University of California Santa Barbara; Estados UnidosFil: Kebede, Seifu. Addis Ababa University; EtiopíaFil: Morales, Marcelo Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; ArgentinaFil: Mueller, Moritz. Swinburne University of Technology; MalasiaFil: Poh, Seng Chee. Universiti Malaysia Terengganu; MalasiaFil: Santos, Vinícius dos. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Shaoneng, He. Nanyang Technological University; SingapurFil: Wang, Lixin. Indiana University-Purdue University Indianapolis; IndiaFil: Yacobaccio, Hugo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; ArgentinaFil: Zwart, Costijn. James Cook University; Australi

    Poly(ethylmethacrylate-co-diethylaminoethyl acrylate) coating improves endothelial re-population, bio-mechanical and anti-thrombogenic properties of decellularized carotid arteries for blood vessel replacement

    Get PDF
    Decellularized vascular scaffolds are promising materials for vessel replacements. However, despite the natural origin of decellularized vessels, issues such as biomechanical incompatibility, immunogenicity risks and the hazards of thrombus formation, still need to be addressed. In this study, we coated decellularized vessels obtained from porcine carotid arteries with poly (ethylmethacrylate-co-diethylaminoethylacrylate) (8g7) with the purpose of improving endothelial coverage and minimizing platelet attachment while enhancing the mechanical properties of the decellularized vascular scaffolds. The polymer facilitated binding of endothelial cells (ECs) with high affinity and also induced endothelial cell capillary tube formation. In addition, platelets showed reduced adhesion on the polymer under flow conditions. Moreover, the coating of the decellularized arteries improved biomechanical properties by increasing its tensile strength and load. In addition, after 5 days in culture, ECs seeded on the luminal surface of 8g7-coated decellularized arteries showed good regeneration of the endothelium. Overall, this study shows that polymer coating of decellularized vessels provides a new strategy to improve re-endothelialization of vascular grafts, maintaining or enhancing mechanical properties while reducing the risk of thrombogenesis. These results could have potential applications in improving tissue-engineered vascular grafts for cardiovascular therapies with small caliber vessels

    Surface Composition of Carbon Nanotubes-Fe-Alumina Nanocomposite Powders: An Integral Low-Energy Electron Mo1ssbauer Spectroscopic Study

    Get PDF
    The surface state of carbon nanotubes-Fe-alumina nanocomposite powders was studied by transmission and integral low-energy electron Mo¨ssbauer spectroscopy. Several samples, prepared under reduction of the R-Al1.8-Fe0.2O3 precursor in a H2-CH4 atmosphere applying the same heating and cooling rate and changing only the maximum temperature (800-1070 °C) were investigated, demonstrating that integral low-energy electron Mo¨ssbauer spectroscopy is a promising tool complementing transmission Mössbauer spectroscopy for the investigation of the location of the metal Fe and iron-carbide particles in the different carbon nanotubenanocomposite systems containing iron. The nature of the iron species (Fe3+, Fe3C, R-Fe, ç-Fe-C) is correlated to their location in the material. In particular, much information was derived for the powders prepared by using a moderate reduction temperature (800, 850, and 910 °C), for which the transmission and integral low-energy electron Mössbauer spectra are markedly different. Indeed, R-Fe and Fe3C were not observed as surface species, while ç-Fe-C is present at the surface and in the bulk in the same proportion independent of the temperature of preparation. This could show that most of the nanoparticles (detected as Fe3C and/or ç-Fe-C) that contribute to the formation of carbon nanotubes are located in the outer porosity of the material, as opposed to the topmost (ca. 5 nm) surface. For the higher reduction temperatures Tr of 990 °C and 1070 °C, all Fe and Fe-carbide particles formed during the reduction are distributed evenly in the bulk and the surface of the matrix grains. The integral low-energy electron Mo¨ssbauer spectroscopic study of a powder oxidized in air at 600 °C suggests that all Fe3C particles oxidize to R-Fe2O3, while the R-Fe and/or ç-Fe-C are partly transformed to Fe1-xO and R-Fe2O3, the latter phase forming a protecting layer that prevents total oxidation

    Alcohol use and burden for 195 countries and territories, 1990-2016 : a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    Background Alcohol use is a leading risk factor for death and disability, but its overall association with health remains complex given the possible protective effects of moderate alcohol consumption on some conditions. With our comprehensive approach to health accounting within the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, we generated improved estimates of alcohol use and alcohol-attributable deaths and disability-adjusted life-years (DALYs) for 195 locations from 1990 to 2016, for both sexes and for 5-year age groups between the ages of 15 years and 95 years and older. Methods Using 694 data sources of individual and population-level alcohol consumption, along with 592 prospective and retrospective studies on the risk of alcohol use, we produced estimates of the prevalence of current drinking, abstention, the distribution of alcohol consumption among current drinkers in standard drinks daily (defined as 10 g of pure ethyl alcohol), and alcohol-attributable deaths and DALYs. We made several methodological improvements compared with previous estimates: first, we adjusted alcohol sales estimates to take into account tourist and unrecorded consumption; second, we did a new meta-analysis of relative risks for 23 health outcomes associated with alcohol use; and third, we developed a new method to quantify the level of alcohol consumption that minimises the overall risk to individual health. Findings Globally, alcohol use was the seventh leading risk factor for both deaths and DALYs in 2016, accounting for 2.2% (95% uncertainty interval [UI] 1.5-3.0) of age-standardised female deaths and 6.8% (5.8-8.0) of age-standardised male deaths. Among the population aged 15-49 years, alcohol use was the leading risk factor globally in 2016, with 3.8% (95% UI 3.2-4-3) of female deaths and 12.2% (10.8-13-6) of male deaths attributable to alcohol use. For the population aged 15-49 years, female attributable DALYs were 2.3% (95% UI 2.0-2.6) and male attributable DALYs were 8.9% (7.8-9.9). The three leading causes of attributable deaths in this age group were tuberculosis (1.4% [95% UI 1. 0-1. 7] of total deaths), road injuries (1.2% [0.7-1.9]), and self-harm (1.1% [0.6-1.5]). For populations aged 50 years and older, cancers accounted for a large proportion of total alcohol-attributable deaths in 2016, constituting 27.1% (95% UI 21.2-33.3) of total alcohol-attributable female deaths and 18.9% (15.3-22.6) of male deaths. The level of alcohol consumption that minimised harm across health outcomes was zero (95% UI 0.0-0.8) standard drinks per week. Interpretation Alcohol use is a leading risk factor for global disease burden and causes substantial health loss. We found that the risk of all-cause mortality, and of cancers specifically, rises with increasing levels of consumption, and the level of consumption that minimises health loss is zero. These results suggest that alcohol control policies might need to be revised worldwide, refocusing on efforts to lower overall population-level consumption.Peer reviewe
    • …
    corecore