216 research outputs found

    The HIV-1 reservoir landscape in persistent elite controllers and transient elite controllers

    Get PDF
    FUNDING. Instituto de Salud Carlos III (FI17/00186, FI19/00083, MV20/00057, PI18/01532, PI19/01127 and PI22/01796), Gilead Fellowships (GLD22/00147). NIH grants AI155171, AI116228, AI078799, HL134539, DA047034, MH134823, amfAR ARCHE and the Bill and Melinda Gates Foundation.BACKGROUND. Persistent controllers (PCs) maintain antiretroviral-free HIV-1 control indefinitely over time, while transient controllers (TCs) eventually lose virological control. It is essential to characterize the quality of the HIV reservoir in terms of these phenotypes in order to identify the factors that lead to HIV progression and to open new avenues toward an HIV cure. METHODS. The characterization of HIV-1 reservoir from peripheral blood mononuclear cells was performed using next-generation sequencing techniques, such as full-length individual and matched integration site proviral sequencing (FLIP-Seq; MIP-Seq). RESULTS. PCs and TCs, before losing virological control, presented significantly lower total, intact, and defective proviruses compared with those of participants on antiretroviral therapy (ART). No differences were found in total and defective proviruses between PCs and TCs. However, intact provirus levels were lower in PCs compared with TCs; indeed the intact/defective HIV-DNA ratio was significantly higher in TCs. Clonally expanded intact proviruses were found only in PCs and located in centromeric satellite DNA or zinc-finger genes, both associated with heterochromatin features. In contrast, sampled intact proviruses were located in permissive genic euchromatic positions in TCs. CONCLUSIONS. These results suggest the need for, and can give guidance to, the design of future research to identify a distinct proviral landscape that may be associated with the persistent control of HIV-1 without ART.Instituto de Salud Carlos III (FI17/00186, FI19/00083, MV20/00057, PI18/01532, PI19/01127, PI22/01796)Gilead Fellowships (GLD22/00147)NIH grants AI155171, AI116228, AI078799, HL134539, DA047034, MH134823, amfAR ARCHEBill and Melinda Gates Foundatio

    The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Molecular Gas Reservoirs in High-redshift Galaxies

    Get PDF
    We study the molecular gas properties of high-z galaxies observed in the ALMA Spectroscopic Survey (ASPECS) that targets an ˜1 arcmin2 region in the Hubble Ultra Deep Field (UDF), a blind survey of CO emission (tracing molecular gas) in the 3 and 1 mm bands. Of a total of 1302 galaxies in the field, 56 have spectroscopic redshifts and correspondingly well-defined physical properties. Among these, 11 have infrared luminosities {L}{IR}\gt {10}11 {L}⊙ , i.e., a detection in CO emission was expected. Out of these, 7 are detected at various significance in CO, and 4 are undetected in CO emission. In the CO-detected sources, we find CO excitation conditions that are lower than those typically found in starburst/sub-mm galaxy/QSO environments. We use the CO luminosities (including limits for non-detections) to derive molecular gas masses. We discuss our findings in the context of previous molecular gas observations at high redshift (star formation law, gas depletion times, gas fractions): the CO-detected galaxies in the UDF tend to reside on the low-{L}{IR} envelope of the scatter in the {L}{IR}{--}{L}{CO}\prime relation, but exceptions exist. For the CO-detected sources, we find an average depletion time of ˜1 Gyr, with significant scatter. The average molecular-to-stellar mass ratio ({M}{{H}2}/M *) is consistent with earlier measurements of main-sequence galaxies at these redshifts, and again shows large variations among sources. In some cases, we also measure dust continuum emission. On average, the dust-based estimates of the molecular gas are a factor ˜2-5× smaller than those based on CO. When we account for detections as well as non-detections, we find large diversity in the molecular gas properties of the high-redshift galaxies covered by ASPECS

    Influence of IL28B Polymorphisms on Response to a Lower-Than-Standard Dose peg-IFN-α 2a for Genotype 3 Chronic Hepatitis C in HIV-Coinfected Patients

    Get PDF
    Background: Data on which to base definitive recommendations on the doses and duration of therapy for genotype 3 HCV/HIV-coinfected patients are scarce. We evaluated the efficacy of a lower peginterferon-α 2a dose and a shorter duration of therapy than the current standard of care in genotype 3 HCV/HIV-coinfected patients. Methods and Findings: Pilot, open-label, single arm clinical trial which involved 58 Caucasian HCV/HIV-coinfected patients who received weekly 135 μg peginterferon-α 2a plus ribavirin 400 mg twice daily during 20 weeks after attaining undetectable viremia. The relationships between baseline patient-related variables, including IL28B genotype, plasma HCV-RNA, ribavirin dose/kg, peginterferon-α 2a and ribavirin levels with virological responses were analyzed. Only 4 patients showed lack of response and 5 patients dropped out due to adverse events related to the study medication. Overall, sustained virologic response (SVR) rates were 58.3% by intention-to-treat and 71.4% by per protocol analysis, respectively. Among patients with rapid virologic response (RVR), SVR and relapses rates were 92.6% and 7.4%, respectively. No relationships were observed between viral responses and ribavirin dose/kg, peginterferon-α 2a concentrations, ribavirin levels or rs129679860 genotype. Conclusions: Weekly 135 μg pegIFN-α 2a could be as effective as the standard 180 μg dose, with a very low incidence of severe adverse events. A 24-week treatment duration appears to be appropriate in patients achieving RVR, but extending treatment up to just 20 weeks beyond negativization of viremia is associated with a high relapse rate in those patients not achieving RVR. There was no influence of IL28B genotype on the virological responses. © 2012 López-Cortés et al.Funding provided by Fundación Pública Andaluza para la gestión de la Investigación en Salud de Sevilla. Hospitales Universitarios Virgen del Rocío. Seville, Spain. The enzyme-linked immunosorbent assay Hu-INF-α kits for determination of pegIFN-α-2a were financed by Roche Pharma, S.A. (Spain).Peer Reviewe

    The HIV-1 reservoir landscape in persistent elite controllers and transient elite controllers.

    Get PDF
    BACKGROUNDPersistent controllers (PCs) maintain antiretroviral-free HIV-1 control indefinitely over time, while transient controllers (TCs) eventually lose virological control. It is essential to characterize the quality of the HIV reservoir in terms of these phenotypes in order to identify the factors that lead to HIV progression and to open new avenues toward an HIV cure.METHODSThe characterization of HIV-1 reservoir from peripheral blood mononuclear cells was performed using next-generation sequencing techniques, such as full-length individual and matched integration site proviral sequencing (FLIP-Seq; MIP-Seq).RESULTSPCs and TCs, before losing virological control, presented significantly lower total, intact, and defective proviruses compared with those of participants on antiretroviral therapy (ART). No differences were found in total and defective proviruses between PCs and TCs. However, intact provirus levels were lower in PCs compared with TCs; indeed the intact/defective HIV-DNA ratio was significantly higher in TCs. Clonally expanded intact proviruses were found only in PCs and located in centromeric satellite DNA or zinc-finger genes, both associated with heterochromatin features. In contrast, sampled intact proviruses were located in permissive genic euchromatic positions in TCs.CONCLUSIONSThese results suggest the need for, and can give guidance to, the design of future research to identify a distinct proviral landscape that may be associated with the persistent control of HIV-1 without ART.FUNDINGInstituto de Salud Carlos III (FI17/00186, FI19/00083, MV20/00057, PI18/01532, PI19/01127 and PI22/01796), Gilead Fellowships (GLD22/00147). NIH grants AI155171, AI116228, AI078799, HL134539, DA047034, MH134823, amfAR ARCHE and the Bill and Melinda Gates Foundation

    Predicting no-show medical appointments using machine learning

    Get PDF
    Health care centers face many issues due to the limited availability of resources, such as funds, equipment, beds, physicians, and nurses. Appointment absences lead to a waste of hospital resources as well as endangering patient health. This fact makes unattended medi- cal appointments both socially expensive and economically costly. This research aimed to build a predictive model to identify whether an appointment would be a no-show or not in order to reduce its consequences. This paper proposes a multi-stage framework to build an accurate predictor that also tackles the imbalanced property that the data exhibits. The first stage includes dimensionality reduction to compress the data into its most important components. The second stage deals with the imbalanced nature of the data. Different machine learning algorithms were used to build the classifiers in the third stage. Various evaluation metrics are also discussed and an evaluation scheme that fits the problem at hand is described. The work presented in this paper will help decision makers at health care centers to implement effective strategies to reduce the number of no-shows

    Defining functional diversity for lignocellulose degradation in a microbial community using multi-omics studies

    Get PDF
    Abstract\ud \ud Background\ud Lignocellulose is one of the most abundant forms of fixed carbon in the biosphere. Current industrial approaches to the degradation of lignocellulose employ enzyme mixtures, usually from a single fungal species, which are only effective in hydrolyzing polysaccharides following biomass pre-treatments. While the enzymatic mechanisms of lignocellulose degradation have been characterized in detail in individual microbial species, the microbial communities that efficiently breakdown plant materials in nature are species rich and secrete a myriad of enzymes to perform “community-level” metabolism of lignocellulose. Single-species approaches are, therefore, likely to miss important aspects of lignocellulose degradation that will be central to optimizing commercial processes.\ud \ud \ud Results\ud Here, we investigated the microbial degradation of wheat straw in liquid cultures that had been inoculated with wheat straw compost. Samples taken at selected time points were subjected to multi-omics analysis with the aim of identifying new microbial mechanisms for lignocellulose degradation that could be applied in industrial pre-treatment of feedstocks. Phylogenetic composition of the community, based on sequenced bacterial and eukaryotic ribosomal genes, showed a gradual decrease in complexity and diversity over time due to microbial enrichment. Taxonomic affiliation of bacterial species showed dominance of Bacteroidetes and Proteobacteria and high relative abundance of genera Asticcacaulis, Leadbetterella and Truepera. The eukaryotic members of the community were enriched in peritrich ciliates from genus Telotrochidium that thrived in the liquid cultures compared to fungal species that were present in low abundance. A targeted metasecretome approach combined with metatranscriptomics analysis, identified 1127 proteins and showed the presence of numerous carbohydrate-active enzymes extracted from the biomass-bound fractions and from the culture supernatant. This revealed a wide array of hydrolytic cellulases, hemicellulases and carbohydrate-binding modules involved in lignocellulose degradation. The expression of these activities correlated to the changes in the biomass composition observed by FTIR and ssNMR measurements.\ud \ud \ud Conclusions\ud A combination of mass spectrometry-based proteomics coupled with metatranscriptomics has enabled the identification of a large number of lignocellulose degrading enzymes that can now be further explored for the development of improved enzyme cocktails for the treatment of plant-based feedstocks. In addition to the expected carbohydrate-active enzymes, our studies reveal a large number of unknown proteins, some of which may play a crucial role in community-based lignocellulose degradation.This work was funded by Biotechnology and Biological Sciences Research\ud Council (BBSRC) Grants BB/1018492/1, BB/K020358/1 and BB/P027717/1, the\ud BBSRC Network in Biotechnology and Bioenergy BIOCATNET and São Paulo\ud Research Foundation (FAPESP) Grant 10/52362-5. ERdA thanks EMBRAPA\ud Instrumentation São Carlos and Dr. Luiz Alberto Colnago for providing the\ud NMR facility and CNPq Grant 312852/2014-2. The authors would like to thank\ud Deborah Rathbone and Susan Heywood from the Biorenewables Develop‑\ud ment Centre for technical assistance in rRNA amplicon sequencing

    Association of a single nucleotide polymorphism combination pattern of the Klotho gene with non-cardiovascular death in patients with chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) is associated with an elevated risk of all-cause mortality, with cardiovascular death being extensively investigated. However, non-cardiovascular mortality represents the biggest percentage, showing an evident increase in recent years. Klotho is a gene highly expressed in the kidney, with a clear influence on lifespan. Low levels of Klotho have been linked to CKD progression and adverse outcomes. Single nucleotide polymorphisms (SNPs) of the Klotho gene have been associated with several diseases, but studies investigating the association of Klotho SNPs with noncardiovascular death in CKD populations are lacking. The main aim of this study was to assess whether 11 Klotho SNPs were associated with non-cardiovascular death in a subpopulation of the National Observatory of Atherosclerosis in Nephrology (NEFRONA) study (n ¼ 2185 CKD patients). After 48 months of follow-up, 62 cardiovascular deaths and 108 non-cardiovascular deaths were recorded. We identified a high non-cardiovascular death risk combination of SNPs corresponding to individuals carrying the most frequent allele (G) at rs562020, the rare allele (C) at rs2283368 and homozygotes for the rare allele (G) at rs2320762 (rs562020 GG/AG þ rs2283368 CC/CT þ rs2320762 GG). Among the patients with the three SNPs genotyped (n ¼ 1016), 75 (7.4%) showed this combination. Furthermore, 95 (9.3%) patients showed a low-risk combination carrying all the opposite genotypes (rs562020 AA þ rs2283368 TT þ rs2320762 GT/TT). All the other combinations [n ¼ 846 (83.3%)] were considered as normal risk. Using competing risk regression analysis, we confirmed that the proposed combinations are independently associated with a higher fhazard ratio [HR] 3.28 [confidence interval (CI) 1.51-7.12]g and lower [HR 6 × 10- (95% CI 3.3 × 10--1.1 × 10-)] risk of suffering a non-cardiovascular death in the CKD population of the NEFRONA cohort compared with patients with the normal-risk combination. Determination of three SNPs of the Klotho gene could help in the prediction of non-cardiovascular death in CKD

    Deep sequencing of the Mexican avocado transcriptome, an ancient angiosperm with a high content of fatty acids

    Get PDF
    Background: Avocado (Persea americana) is an economically important tropical fruit considered to be a good source of fatty acids. Despite its importance, the molecular and cellular characterization of biochemical and developmental processes in avocado is limited due to the lack of transcriptome and genomic information. Results: The transcriptomes of seeds, roots, stems, leaves, aerial buds and flowers were determined using different sequencing platforms. Additionally, the transcriptomes of three different stages of fruit ripening (pre-climacteric, climacteric and post-climacteric) were also analyzed. The analysis of the RNAseqatlas presented here reveals strong differences in gene expression patterns between different organs, especially between root and flower, but also reveals similarities among the gene expression patterns in other organs, such as stem, leaves and aerial buds (vegetative organs) or seed and fruit (storage organs). Important regulators, functional categories, and differentially expressed genes involved in avocado fruit ripening were identified. Additionally, to demonstrate the utility of the avocado gene expression atlas, we investigated the expression patterns of genes implicated in fatty acid metabolism and fruit ripening. Conclusions: A description of transcriptomic changes occurring during fruit ripening was obtained in Mexican avocado, contributing to a dynamic view of the expression patterns of genes involved in fatty acid biosynthesis and the fruit ripening process

    Measurements of long-range azimuthal anisotropies and associated Fourier coefficients for pp collisions at √s=5.02 and 13 TeV and p+Pb collisions at √sNN=5.02 TeV with the ATLAS detector

    Get PDF
    ATLAS measurements of two-particle correlations are presented for √s=5.02 and 13 TeV ppcollisions and for √sNN=5.02 TeV p+Pb collisions at the LHC. The correlation functions are measured as a function of relative azimuthal angle Δϕ, and pseudorapidity separation Δη, using charged particles detected within the pseudorapidity interval |η|2, is studied using a template fitting procedure to remove a “back-to-back” contribution to the correlation function that primarily arises from hard-scattering processes. In addition to the elliptic, cos (2Δϕ), modulation observed in a previous measurement, the pp correlation functions exhibit significant cos (3Δϕ) and cos (4Δϕ) modulation. The Fourier coefficients vn, n associated with the cos (nΔϕ) modulation of the correlation functions for n=2–4 are measured as a function of charged-particle multiplicity and charged-particle transverse momentum. The Fourier coefficients are observed to be compatible with cos (nϕ) modulation of per-event single-particle azimuthal angle distributions. The single-particle Fourier coefficients vn are measured as a function of charged-particle multiplicity, and charged-particle transverse momentum for n=2–4. The integrated luminosities used in this analysis are, 64nb−1 for the √s=13 TeV pp data, 170 nb−1 for the √ s = 5.02 TeV pp data, and 28 nb−1 for the √sNN = 5.02 TeV p+Pb data
    corecore