42 research outputs found

    12/15-Lipoxygenase Is an Interleukin-13 and Interferon-γ Counterregulated-Mediator of Allergic Airway Inflammation

    Get PDF
    Interleukin-13 and interferon-γ are important effectors of T-helper cells. Interleukin-13 increases expression of the arachidonic acid-metabolizing enzyme, 15-lipoxygenase-1, in a variety of cell types. 15-lipoxygenase-1 is dramatically elevated in the airways of subjects with asthma. Studies in animals indicate that 15-lipoxygenase-1 contributes to the development of allergic airway inflammation but is protective in some other forms of inflammation. We tested the hypothesis that the ability of interleukin-13 and interferon-γ to counterregulate allergic airway inflammation was potentially mediated by counterregulation of 12/15-lipoxygenase, the mouse ortholog of 15-lipoxygenase-1. The airways of mice were treated with interleukin-13 or interferon-γ one day prior to each of the four allergen exposures. Interleukin-13 augmented and interferon-γ inhibited allergic airway inflammation independently of systemic IgE and mucosal IgA responses but in association with counterregulation of 12/15-lipoxygenase. Interleukin-13 and interferon-γ counterregulate 12/15-lipoxygenase potentially contributing to the effects of these cytokines on allergic airway inflammation

    Toward An Identity for the Field of Doctoral Education in Health Sciences

    Get PDF
    The Association of Doctoral Programs in Health Sciences (ADPHS) was informally established in November 2019, officially incorporated in August 2021, and is currently a 501(c)(3) non-profit organization comprised of the directors of member doctoral programs of health sciences. The ADPHS grew from informal discussions among program directors who agreed that a major problem in the field of doctoral education in health sciences was the lack of a clearly defined and easily articulable identity. The discussions led to the drafting of an informal and nonscientific survey used to help clarify the current health sciences education environment, relevant emerging trends, and the educational philosophies adopted by the directors of health sciences doctoral programs nationally. The results of the survey and follow-up discussions revealed a strong consensus among program directors that the field of doctorate education in health sciences is uniformly characterized by its interdisciplinary nature. In this position paper, we provide the rationale for the formal position of the ADPHS that the identity of the field of doctoral education in health sciences is based on its interdisciplinary approach to education

    Enhancement of Stochastic Resonance in distributed systems due to a selective coupling

    Full text link
    Recent massive numerical simulations have shown that the response of a "stochastic resonator" is enhanced as a consequence of spatial coupling. Similar results have been analytically obtained in a reaction-diffusion model, using "nonequilibrium potential" techniques. We now consider a field-dependent diffusivity and show that the "selectivity" of the coupling is more efficient for achieving stochastic-resonance enhancement than its overall value in the constant-diffusivity case.Comment: 10 pgs (RevTex), 4 figures, submitted to Phys.Rev.Let

    Experimental evidence of stochastic resonance without tuning due to non Gaussian noises

    Full text link
    In order to test theoretical predictions, we have studied the phenomenon of stochastic resonance in an electronic experimental system driven by white non Gaussian noise. In agreement with the theoretical predictions our main findings are: an enhancement of the sensibility of the system together with a remarkable widening of the response (robustness). This implies that even a single resonant unit can reach a marked reduction in the need of noise tuning.Comment: 4 pages, 3 figure

    Does methylphenidate improve inhibition and other cognitive abilities in adults with childhood-onset ADHD?

    Get PDF
    Contains fulltext : 48908.pdf (publisher's version ) (Closed access)We examined the effect of methylphenidate (Mph) on inhibition and several other cognitive abilities in 43 adults with Attention Deficit Hyperactivity Disorder (ADHD) by use of Conners' Continuous Performance Test (CPT) and the Change Task (ChT), an extension of the Stop Signal Test (SST). In a double blind, cross-over, placebo controlled study with Mph, tests were administered during the third week of individually titrated treatment with Mph (maximum dose 1 mg / kg / day) and during the third week of treatment with placebo. We established large medication effects for commission errors, standard error of mean reaction time, and attentiveness on the CPT, as well as moderate medication effects for mean reaction time on the CPT and response re-engagement speed on the ChT. For Stop Signal Reaction Time (SSRT) on the ChT, we also established large effects of Mph, but only in a group of participants who showed slow SSRTs on placebo. Mph indeed ameliorates inhibition, which is the core problem of ADHD, and certain other cognitive abilities in adults with ADHD

    Investigation of previously implicated genetic variants in chronic tic disorders: a transmission disequilibrium test approach

    Get PDF
    Genetic studies in Tourette syndrome (TS) are characterized by scattered and poorly replicated findings. We aimed to replicate findings from candidate gene and genome-wide association studies (GWAS). Our cohort included 465 probands with chronic tic disorder (93% TS) and both parents from 412 families (some probands were siblings). We assessed 75 single nucleotide polymorphisms (SNPs) in 465 parent–child trios; 117 additional SNPs in 211 trios; and 4 additional SNPs in 254 trios. We performed SNP and gene-based transmission disequilibrium tests and compared nominally significant SNP results with those from a large independent case–control cohort. After quality control 71 SNPs were available in 371 trios; 112 SNPs in 179 trios; and 3 SNPs in 192 trios. 17 were candidate SNPs implicated in TS and 2 were implicated in obsessive–compulsive disorder (OCD) or autism spectrum disorder (ASD); 142 were tagging SNPs from eight monoamine neurotransmitter-related genes (including dopamine and serotonin); 10 were top SNPs from TS GWAS; and 13 top SNPs from attention-deficit/hyperactivity disorder, OCD, or ASD GWAS. None of the SNPs or genes reached significance after adjustment for multiple testing. We observed nominal significance for the candidate SNPs rs3744161 (TBCD) and rs4565946 (TPH2) and for five tagging SNPs; none of these showed significance in the independent cohort. Also, SLC1A1 in our gene-based analysis and two TS GWAS SNPs showed nominal significance, rs11603305 (intergenic) and rs621942 (PICALM). We found no convincing support for previously implicated genetic polymorphisms. Targeted re-sequencing should fully appreciate the relevance of candidate genes

    Synaptic processes and immune-related pathways implicated in Tourette syndrome

    Get PDF
    Tourette syndrome (TS) is a neuropsychiatric disorder of complex genetic architecture involving multiple interacting genes. Here, we sought to elucidate the pathways that underlie the neurobiology of the disorder through genome-wide analysis. We analyzed genome-wide genotypic data of 3581 individuals with TS and 7682 ancestry-matched controls and investigated associations of TS with sets of genes that are expressed in particular cell types and operate in specific neuronal and glial functions. We employed a self-contained, set-based association method (SBA) as well as a competitive gene set method (MAGMA) using individual-level genotype data to perform a comprehensive investigation of the biological background of TS. Our SBA analysis identified three significant gene sets after Bonferroni correction, implicating ligand-gated ion channel signaling, lymphocytic, and cell adhesion and transsynaptic signaling processes. MAGMA analysis further supported the involvement of the cell adhesion and trans-synaptic signaling gene set. The lymphocytic gene set was driven by variants in FLT3, raising an intriguing hypothesis for the involvement of a neuroinflammatory element in TS pathogenesis. The indications of involvement of ligand-gated ion channel signaling reinforce the role of GABA in TS, while the association of cell adhesion and trans-synaptic signaling gene set provides additional support for the role of adhesion molecules in neuropsychiatric disorders. This study reinforces previous findings but also provides new insights into the neurobiology of TS

    Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders

    Get PDF
    Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders
    corecore