5 research outputs found

    Measurement of the tt̄W and tt̄Z production cross sections in pp collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    The production cross sections of top-quark pairs in association with massive vector bosons have been measured using data from pp collisions at s√ = 8 TeV. The dataset corresponds to an integrated luminosity of 20.3 fb−¹ collected by the ATLAS detector in 2012 at the LHC. Final states with two, three or four leptons are considered. A fit to the data considering the tt̄W and tt̄Z processes simultaneously yields a significance of 5.0σ (4.2σ) over the background-only hypothesis for tt¯Wtt¯W (tt̄Z) production. The measured cross sections are σtt̄W = 369 + 100−91 fb and σtt̄Z = 176 + 58−52 fb. The background-only hypothesis with neither tt̄W nor tt̄Z production is excluded at 7.1σ. All measurements are consistent with next-to-leading-order calculations for the tt̄W and tt̄Z processes

    Study of the rare decays of B-s(0) and B-0 into muon pairs from data collected during the LHC Run 1 with the ATLAS detector

    Get PDF
    A study of the decays B0s→μ+μ−Bs0→μ+μ− and B0→μ+μ−B0→μ+μ− has been performed using data corresponding to an integrated luminosity of 25 fb −1−1 of 7 and 8 TeV proton–proton collisions collected with the ATLAS detector during the LHC Run 1. For the B0B0 dimuon decay, an upper limit on the branching fraction is set at B(B0→μ+μ−)<4.2×10−10B(B0→μ+μ−)<4.2×10−10 at 95 % confidence level. For B0sBs0 , the branching fraction B(B0s→μ+μ−)=(0.9+1.1−0.8)×10−9B(Bs0→μ+μ−)=(0.9−0.8+1.1)×10−9 is measured. The results are consistent with the Standard Model expectation with a p value of 4.8 %, corresponding to 2.0 standard deviations

    Constraints on off-shell Higgs boson production and the Higgs boson total width in ZZ -> 4l and ZZ -> 2l2v final states with the ATLAS detector

    No full text
    A measurement of off-shell Higgs boson production in the ZZ -> 4l and ZZ -> 2l2v decay channels, where stands for either an electron or a muon, is performed using data from proton-proton collisions at a centre-of-mass energy of root s = 13 TeV. The data were collected by the ATLAS experiment in 2015 and 2016 at the Large Hadron Collider, and they correspond to an integrated luminosity of 36.1 fb(-1). An observed (expected) upper limit on the off-shell Higgs signal strength, defined as the event yield normalised to the Standard Model prediction, of 3.8 (3.4) is obtained at 95% confidence level (CL). Assuming the ratio of the Higgs boson couplings to the Standard Model predictions is independent of the momentum transfer of the Higgs production mechanism considered in the analysis, a combination with the on-shell signal-strength measurements yields an observed (expected) 95% CL upper limit on the Higgs boson total width of 14.4 (15.2) MeV. (C) 2018 The Author. Published by Elsevier B.V

    Constraints on off-shell Higgs boson production and the Higgs boson total width in ZZ -> 4l and ZZ -> 2l2v final states with the ATLAS detector

    Get PDF
    A measurement of off-shell Higgs boson production in the ZZ4ZZ\to4\ell and ZZ22νZZ\to2\ell2\nu decay channels, where \ell stands for either an electron or a muon, is performed using data from proton-proton collisions at a centre-of-mass energy of s=13\sqrt{s}=13 TeV. The data were collected by the ATLAS experiment in 2015 and 2016 at the Large Hadron Collider, and they correspond to an integrated luminosity of 36.1 fb1^{-1}. An observed (expected) upper limit on the off-shell Higgs signal strength, defined as the event yield normalised to the Standard Model prediction, of 3.8 (3.4) is obtained at 95% confidence level (CL). Assuming the ratio of the Higgs boson couplings to the Standard Model predictions is independent of the momentum transfer of the Higgs production mechanism considered in the analysis, a combination with the on-shell signal-strength measurements yields an observed (expected) 95% CL upper limit on the Higgs boson total width of 14.4 (15.2) MeV

    Erratum to: Higgs boson production cross-section measurements and their EFT interpretation in the 4 ℓ decay channel at s = 13 TeV with the ATLAS detector (The European Physical Journal C, (2020), 80, 10, (957), 10.1140/epjc/s10052-020-8227-9)

    Get PDF
    When quoting the final cross section result in the text of the paper (Eur. Phys. J. C 80 (2020) 957), the theory component of the uncertainty was incorrectly set to 0.04 pb while the correct value of 0.03 pb was given in Table 8 and in all other results reported in this paper
    corecore