872 research outputs found

    Divergent effects of DNMT3A and TET2 mutations on hematopoietic progenitor cell fitness

    Get PDF
    The DNA methylation regulators DNMT3A and TET2 are recurrently mutated in hematological disorders. Despite possessing antagonistic biochemical activities, loss-of-function murine models show overlapping phenotypes in terms of increased hematopoietic stem cell (HSC) fitness. Here, we directly compared the effects of these mutations on hematopoietic progenitor function and disease initiation. In contrast to Dnmt3a-null HSCs, which possess limitless self-renewal in vivo, Tet2-null HSCs unexpectedly exhaust at the same rate as control HSCs in serial transplantation assays despite an initial increase in self-renewal. Moreover, loss of Tet2 more acutely sensitizes hematopoietic cells to the addition of a common co-operating mutation (Flt

    Characterization of retinal regeneration in adult zebrafish following multiple rounds of phototoxic lesion

    Get PDF
    Müller glia in the zebrafish retina respond to retinal damage by re-entering the cell cycle, which generates large numbers of retinal progenitors that ultimately replace the lost neurons. In this study we compared the regenerative outcomes of adult zebrafish exposed to one round of phototoxic treatment with adult zebrafish exposed to six consecutive rounds of phototoxic treatment. We observed that Müller glia continued to re-enter the cell cycle to produce clusters of retinal progenitors in zebrafish exposed to multiple rounds of phototoxic light. Some abnormalities were noted, however. First, we found that retinas exposed to multiple rounds of damage exhibited a greater loss of photoreceptors at 36 hours of light damage than retinas that were exposed to their first round of light damage. In addition, we found that Müller glia appeared to have an increase in the acute gliotic response in retinas exposed to multiple rounds of light treatment. This was evidenced by cellular hypertrophy, changes in GFAP cellular localization, and transient increases in stat3 and gfap expression. Finally, following the sixth round of phototoxic lesion, we observed a significant increase in mis-localized HuC/D-positive amacrine and ganglion cells in the inner plexiform layer and outer retina, and a decreased number of regenerated blue cone photoreceptors. These data add to recent findings that retinal regeneration in adult zebrafish occurs concomitant with Müller glia reactivity and can result in the generation of aberrant neurons. These data are also the first to demonstrate that Müller glia appear to modify their phenotype in response to multiple rounds of phototoxic lesion, exhibiting an increase in acute gliosis while maintaining a remarkable capacity for long-term regeneration of photoreceptors

    Smoking patterns and chronic kidney disease in US Hispanics: Hispanic Community Health Study/Study of Latinos

    Get PDF
    Intermittent smoking is prevalent among Hispanics, but little is known about whether this smoking pattern associates with increased chronic kidney disease (CKD) risk in this population. The objective of the present study is to identify patterns of exposure associated with CKD in US Hispanics

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Monoclonal antibodies for prophylactic and therapeutic use against viral infections

    Get PDF
    Neutralizing antibodies play an essential part in antiviral immunity and are instrumental in preventing or modulating viral diseases. Polyclonal antibody preparations are increasingly being replaced by highly potent monoclonal antibodies (mAbs). Cocktails of mAbs and bispecific constructs can be used to simultaneously target multiple viral epitopes and to overcome issues of neutralization escape. Advances in antibody engineering have led to a large array of novel mAb formats, while deeper insight into the biology of several viruses and increasing knowledge of their neutralizing epitopes has extended the list of potential targets. In addition, progress in developing inexpensive production platforms will make antiviral mAbs more widely available and affordable

    Phenotyping male infertility in the mouse: how to get the most out of a ‘non-performer’

    Get PDF
    BACKGROUND: Functional male gametes are produced through complex processes that take place within the testis, epididymis and female reproductive tract. A breakdown at any of these phases can result in male infertility. The production of mutant mouse models often yields an unexpected male infertility phenotype. It is with this in mind that the current review has been written. The review aims to act as a guide to the 'non-reproductive biologist' to facilitate a systematic analysis of sterile or subfertile mice and to assist in extracting the maximum amount of information from each model. METHODS: This is a review of the original literature on defects in the processes that take a mouse spermatogonial stem cell through to a fully functional spermatozoon, which result in male infertility. Based on literature searches and personal experience, we have outlined a step-by-step strategy for the analysis of an infertile male mouse line. RESULTS: A wide range of methods can be used to define the phenotype of an infertile male mouse. These methods range from histological methods such as electron microscopy and immunohistochemistry, to hormone analyses and methods to assess sperm maturation status and functional competence. CONCLUSION: With the increased rate of genetically modified mouse production, the generation of mouse models with unexpected male infertility is increasing. This manuscript will help to ensure that the maximum amount of information is obtained from each mouse model and, by extension, will facilitate the knowledge of both normal fertility processes and the causes of human infertility

    Crop pests and predators exhibit inconsistent responses to surrounding landscape composition

    Get PDF
    The idea that noncrop habitat enhances pest control and represents a win–win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win–win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies
    corecore