204 research outputs found

    Diagnostic accuracy of autofluorescence-Raman spectroscopy for surgical margin assessment during Mohs micrographic surgery of basal cell carcinoma

    Get PDF
    Autofluorescence (AF)-Raman spectroscopy has been shown to identify residual basal cell carcinoma (BCC) on frozen skin specimens and fresh skin specimens immediately after excision by Mohs surgery. This first diagnostic test of accuracy of AF-Raman on 130 full-face Mohs tissue layers (130 patients) shows that with improvement in tissue processing, the AF-Raman instrument is viable technique for intra-operative assessment of surgical margins

    Micro-Raman Spectroscopy and Univariate Analysis for Monitoring Disease Follow-Up

    Get PDF
    Micro-Raman spectroscopy is a very promising tool for medical applications, thanks to its sensitivity to subtle changes in the chemical and structural characteristics of biological specimens. To fully exploit these promises, building a method of data analysis properly suited for the case under study is crucial. Here, a linear or univariate approach using a R2 determination coefficient is proposed for discriminating Raman spectra even with small differences. The validity of the proposed approach has been tested using Raman spectra of high purity glucose solutions collected in the 600 to 1,600 cm−1 region and also from solutions with two known solutes at different concentrations. After this validation step, the proposed analysis has been applied to Raman spectra from oral human tissues affected by Pemphigus Vulgaris (PV), a rare life-threatening autoimmune disease, for monitoring disease follow-up. Raman spectra have been obtained in the wavenumber regions from 1,050 to 1,700 cm−1 and 2,700 to 3,200 cm−1 from tissues of patients at different stages of pathology (active PV, under therapy and PV in remission stage) as confirmed by histopathological and immunofluorescence analysis. Differences in the spectra depending on tissue illness stage have been detected at 1,150–1,250 cm−1 (amide III) and 1,420–1,450 cm−1 (CH3 deformation) regions and around 1,650 cm−1 (amide I) and 2,930 cm−1 (CH3 symmetric stretch). The analysis of tissue Raman spectra by the proposed univariate method has allowed us to effectively differentiate tissues at different stages of pathology

    Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus

    Get PDF
    Several techniques are under development to diagnose oesophageal adenocarcinoma at an earlier stage. We have demonstrated the potential of Raman spectroscopy, an optical diagnostic technique, for the identification and classification of malignant changes. However, there is no clear recognition of the biochemical changes that distinguish between the different stages of disease. Our aim is to understand these changes through Raman mapping studies. Raman spectral mapping was used to analyse 20-ÎŒm sections of tissue from 29 snap-frozen oesophageal biopsies. Contiguous haematoxylin and eosin sections were reviewed by a consultant pathologist. Principal component analysis was used to identify the major differences between the spectra across each map. Pseudocolour score maps were generated and the peaks of corresponding loads identified enabling visualisation of the biochemical changes associated with malignancy. Changes were noted in the distribution of DNA, glycogen, lipids and proteins. The mean spectra obtained from selected regions demonstrate increased levels of glycogen in the squamous area compared with increased DNA levels in the abnormal region. Raman spectroscopy is a highly sensitive and specific technique for demonstration of biochemical changes in the carcinogenesis of Barrett's oesophagus. There is potential for in vivo application for real-time endoscopic optical diagnosis

    Raman spectroscopy and advanced mathematical modelling in the discrimination of human thyroid cell lines

    Get PDF
    Raman spectroscopy could offer non-invasive, rapid and an objective nature to cancer diagnostics. However, much work in this field has focused on resolving differences between cancerous and non-cancerous tissues, and lacks the reproducibility and interpretation to be put into clinical practice. Much work is needed on basic cellular differences between malignancy and normal. This would allow the establishment of a clinically relevant cellular based model to translate to tissue classification. Raman spectroscopy provides a very detailed biochemical analysis of the target material and to 'unlock' this potential requires sophisticated mathematical modelling such as neural networks as an adjunct to data interpretation. Commercially obtained cancerous and non-cancerous cells, cultured in the laboratory were used in Raman spectral measurements. Data trends were visualised through PCA and then subjected to neural network analysis based on self-organising maps; consisting of m maps, where m is the number of classes to be recognised. Each map approximates the statistical distribution of a given class. The neural network analysis provided a 95% accuracy for identification of the cancerous cell line and 92% accuracy for normal cell line. In this preliminay study we have demonstrated th ability to distinguish between "normal" and cancerous commercial cell lines. This encourages future work to establish the reasons underpinning these spectral differences and to move forward to more complex systems involving tissues. We have also shown that the use of sophisticated mathematical modelling allows a high degree of discrimination of 'raw' spectral data

    Raman spectroscopy: techniques and applications in the life sciences

    Get PDF
    Raman spectroscopy is an increasingly popular technique in many areas including biology and medicine. It is based on Raman scattering, a phenomenon in which incident photons lose or gain energy via interactions with vibrating molecules in a sample. These energy shifts can be used to obtain information regarding molecular composition of the sample with very high accuracy. Applications of Raman spectroscopy in the life sciences have included quantification of biomolecules, hyperspectral molecular imaging of cells and tissue, medical diagnosis, and others. This review briefly presents the physical origin of Raman scattering explaining the key classical and quantum mechanical concepts. Variations of the Raman effect will also be considered, including resonance, coherent, and enhanced Raman scattering. We discuss the molecular origins of prominent bands often found in the Raman spectra of biological samples. Finally, we examine several variations of Raman spectroscopy techniques in practice, looking at their applications, strengths, and challenges. This review is intended to be a starting resource for scientists new to Raman spectroscopy, providing theoretical background and practical examples as the foundation for further study and exploration

    Optical Imaging of Tumor Response to Hyperbaric Oxygen Treatment and Irradiation in an Orthotopic Mouse Model of Head and Neck Squamous Cell Carcinoma

    Get PDF
    PURPOSE: Hyperbaric oxygen therapy (HBOT) is used in the treatment of radiation-induced tissue injury but its effect on (residual) tumor tissue is indistinct and therefore investigated in this study. PROCEDURES: Orthotopic FaDu tumors were established in mice, and the response of the (irradiated) tumors to HBOT was monitored by bioluminescence imaging. Near infrared fluorescence imaging using AngioSense750 and Hypoxisense680 was applied to detect tumor vascular permeability and hypoxia. RESULTS: HBOT treatment resulted in accelerated growth of non-irradiated tumors, but mouse survival was improved. Tumor vascular leakiness and hypoxia were enhanced after HBOT, whereas histological characteristics, epithelial-to-mesenchymal transition markers, and metastatic incidence were not influenced. CONCLUSIONS: Squamous cell carcinoma responds to HBOT with respect to tumor growth, vascular permeability, and hypoxia, which may have implications for its use in cancer patients. The ability to longitudinally analyze tumor characteristics highlights the versatility and potential of optical imaging methods in oncological research. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11307-015-0834-8) contains supplementary material, which is available to authorized users

    En kritisk innehÄllsanalys om medias negativa rapportering av förorten, dess invÄnare och kultur

    No full text
    2022-03-09</p
    • 

    corecore