317 research outputs found

    Evolution of collective and noncollective structures in Xe 123

    Get PDF
    An experiment involving a heavy-ion-induced fusion-evaporation reaction was carried out where high-spin states of Xe123 were populated in the Se80(Ca48,5n)Xe123 reaction at 207 MeV beam energy. Gamma-ray coincidence events were recorded with the Gammasphere Ge detector array. The previously known level scheme was confirmed and enhanced with the addition of five new band structures and several interband transitions. Cranked Nilsson-Strutinsky (CNS) calculations were performed and compared with the experimental results in order to assign configurations to the bands

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Core excitations beyond maximally aligned configurations in 123I

    Get PDF
    High-spin states in 123I have been populated in the 80Se(48Ca,p4n)123I reaction at 207 MeV and γ-ray coincidence events have been recorded with the Gammasphere spectrometer. The level scheme of 123I has been extended up to spin I=63/2. The nucleus undergoes a shape transition from moderately deformed states with collective rotation at low spins to noncollective oblate configurations at higher spins. Maximally aligned terminating states involving all nine particles outside the 114Sn core and states with one particle antialigned are identified. A large number of weak transitions feed the terminating states. Cranked Nilsson-Strutinsky calculations have been performed to determine possible configurations for the observed energy levels

    Highly deformed band structures due to core excitations in Xe 123

    Get PDF
    High-spin states in Xe123 were populated in the Se80(Ca48, 5n)Xe123 reaction at a beam energy of 207 MeV. γ-ray coincidence events were recorded with the Gammasphere spectrometer. Four new high-spin bands have been discovered in this nucleus. The bands are compared with those calculated within the framework of cranked Nilsson-Strutinsky and cranked Nilsson-Strutinsky-Bogoliubov models. It is concluded that the configurations of the bands involve two-proton excitations across the Z=50 as well as excitation of neutrons across the N=82 shell gaps resulting in a large deformation, 2≈0.30 and γ≈5°C

    Revised level structure of Te 120

    Get PDF
    The level scheme of the nucleus Te120, populated in the reaction Se80(Ca48,α4n), was reinvestigated using γ-ray coincidence data measured with the Gammasphere spectrometer. Previously, five high-spin rotational bands were discovered in this nucleus. The present reinvestigation revealed that the decay of band b1 is more complex than suggested in the earlier work and that it cannot be uniquely determined. Furthermore, a number of new transitions are added to the level scheme. The implications for the spin assignments and excitation energies of the five bands and for comparisons with cranked Nilsson-Strutinsky calculations are discussed

    High-spin spectroscopy in Xe125

    Get PDF
    Levels excited up to 39.8 MeV and 119/2 units of angular momentum have been populated in Xe125 by the 82Se(Ca48,5n)Xe125 reaction. High-fold γ-ray coincidence events were measured using the Gammasphere Ge detector array. Nine regular rotational bands extending from levels identified previously up to almost 60ℏ have been identified, and three of these have been connected to low-lying levels having well-established spins and parities. Configurations have been assigned to six of the bands based on alignment properties, band crossings, and comparison with theoretical cranked shell model calculations (CSM). Transition quadrupole moments have been measured for these bands in the spin range 31-55ℏ and were found to be in agreement with the CSM calculations. The corresponding quadrupole deformation ε2 ranges from 0.28 to 0.34 at a γ deformation of 0° and from 0.29 to 0.36 at a γ value of 5°

    Collective and noncollective excitations in 122Te

    Get PDF
    High-spin states in 122Te were populated in the reaction 82Se(48Ca, α4n)122Te at a beam energy of 200 MeV and γ-ray coincidences were measured with the Gammasphere spectrometer. The previously known level scheme was extended to considerably higher spin. Maximally aligned states and several high-energy transitions feeding into some of these levels were observed. In addition, seven collective high-spin bands were discovered for the first time in this nucleus. The experimental results are compared with cranked Nilsson-Strutinsky model calculations and possible configuration assignments to the new high-spin structures are discussed

    Collective and noncollective states in 120Te

    Get PDF
    High-spin states in 120Te were populated in the reaction 80Se(48Ca, α4n)120Te at a beam energy of 207 MeV and γ-ray coincidences were measured using the Gammasphere spectrometer. The previously known level scheme is extended to higher spin and new interband transitions and side-feeding branches are established. Five highly deformed rotational bands, extending up to almost I=50, are observed for the first time. The bands are compared with similar structures found recently in neighboring nuclei. The experimental results are interpreted within the framework of the cranked Nilsson-Strutinsky model. Configuration assignments to several terminating states and to the high-spin bands are discussed
    corecore