9 research outputs found

    An implanted device enables in vivo monitoring of extracellular vesicle-mediated spread of pro-inflammatory mast cell response in mice

    Get PDF
    Abstract Mast cells have been shown to release extracellular vesicles (EVs) in vitro. However, EV-mediated mast cell communication in vivo remains unexplored. Primary mast cells from GFP-transgenic and wild type mice, were grown in the presence or absence of lipopolysaccharide (LPS), and the secreted EVs were separated from the conditioned media. Mast cell-derived EVs were next cultured with LPS-naïve mast cells, and the induction of TNF-α expression was monitored. In addition, primary mast cells were seeded in diffusion chambers that were implanted into the peritoneal cavities of mice. Diffusion chambers enabled the release of GFP+ mast cell-derived EVs in vivo into the peritoneal cavity. Peritoneal lavage cells were assessed for the uptake of GFP+ EVs and for TNF-α production. In vitro, LPS-stimulated mast cell-derived EVs were efficiently taken up by non-stimulated mast cells, and induced TNF-α expression in a TLR4, JNK and P38 MAPK dependent manner. In vivo, using implanted diffusion chambers, we confirmed the release and transmission of mast cell-derived EVs to other mast cells with subsequent induction of TNF-α expression. These data show an EV-mediated spreading of pro-inflammatory response between mast cells, and provide the first in vivo evidence for the biological role of mast cell-derived EVs

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF

    Acidification of blood plasma facilitates the separation and analysis of extracellular vesicles

    Get PDF
    Background: Blood plasma is available with minimal invasive sampling, it has significant diagnostic utility, and it is a valuable source of extracellular vesicles (EVs). Neverthe- less, rich protein content, the presence of lipoproteins (LPs) that share similar biophysical properties, and relatively low abundance of EVs, especially those of rare subpopulations, make any downstream application a very challenging task. The growing evidence of the intricate surface interactome of EVs, and the association of EVs with LPs, impose further challenges during EV purification, detection, and biomarker analyses. Objectives: In this study, we tackled the fundamental issues of plasma EV yield and LP co-isolation and their implications in the subsequent marker analyses. Methods: Moderate acidification of plasma was combined with size exclusion chromatography (SEC) and/or differential centrifugation (DC) to disrupt LPs and improve recovery of EVs and their subsequent detection by immunoassays and single-particle analysis methods. Results: Our results demonstrate a surprisingly efficient enrichment of EVs (up to 3.3-fold higher than at pH 7) and partial depletion of LPs (up to 61.2%). Acidification of blood plasma samples enabled a quick single-step isoelectric precipitation of up to 20.4% of EVs directly from plasma, upon short low-speed centrifugation. Conclusion: Thus, acidification holds potential as a simple and inexpensive methodological step, which improves the efficacy of plasma EV enrichment and may have implications in future biomarker discoveries

    Neutrophils produce proinflammatory or anti-inflammatory extracellular vesicles depending on the environmental conditions

    Get PDF
    Extracellular vesicles (EVs) are important elements of intercellular communication. A plethora of different, occasionally even opposite, physiologic and pathologic effects have been attributed to these vesicles in the last decade. A direct comparison of individual observations is however hampered by the significant differences in the way of elicitation, collection, handling, and storage of the investigated vesicles. In the current work, we carried out a careful comparative study on 3, previously characterized types of EVs produced by neutrophilic granulocytes. We investigated in parallel the modulation of multiple blood-related cells and functions by medium-sized vesicles. We show that EVs released from resting neutrophils exert anti-inflammatory action by reducing production of reactive oxygen species (ROS) and cytokine release from neutrophils. In contrast, vesicles generated upon encounter of neutrophils with opsonized particles rather promote proinflammatory processes as they increase production of ROS and cytokine secretion from neutrophils and activate endothelial cells. EVs released from apoptosing cells were mainly active in promoting coagulation. We thus propose that EVs are "custom made," acquiring selective capacities depending on environmental factors prevailing at the time of their biogenesis

    Circulating cardiomyocyte-derived extracellular vesicles reflect cardiac injury during systemic inflammatory response syndrome in mice

    Get PDF
    The release of extracellular vesicles (EVs) is increased under cellular stress and cardiomyocyte damaging conditions. However, whether the cardiomyocyte-derived EVs eventually reach the systemic circulation and whether their number in the bloodstream reflects cardiac injury, remains unknown. Wild type C57B/6 and conditional transgenic mice expressing green fluorescent protein (GFP) by cardiomyocytes were studied in lipopolysaccharide (LPS)-induced systemic inflammatory response syndrome (SIRS). EVs were separated both from platelet-free plasma and from the conditioned medium of isolated cardiomyocytes of the left ventricular wall. Size distribution and concentration of the released particles were determined by Nanoparticle Tracking Analysis. The presence of GFP + cardiomyocyte-derived circulating EVs was monitored by flow cytometry and cardiac function was assessed by echocardiography. In LPS-treated mice, systemic inflammation and the consequent cardiomyopathy were verified by elevated plasma levels of TNFα, GDF-15, and cardiac troponin I, and by a decrease in the ejection fraction. Furthermore, we demonstrated elevated levels of circulating small- and medium-sized EVs in the LPS-injected mice. Importantly, we detected GFP(+) cardiomyocyte-derived EVs in the circulation of control mice, and the number of these circulating GFP(+) vesicles increased significantly upon intraperitoneal LPS administration (P = 0.029). The cardiomyocyte-derived GFP(+) EVs were also positive for intravesicular troponin I (cTnI) and muscle-associated glycogen phosphorylase (PYGM). This is the first direct demonstration that cardiomyocyte-derived EVs are present in the circulation and that the increased number of cardiac-derived EVs in the blood reflects cardiac injury in LPS-induced systemic inflammation (SIRS). SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00018-021-04125-w

    Activated Polymorphonuclear Derived Extracellular Vesicles are Potential Biomarkers of Periprosthetic Joint Infection

    Get PDF
    BACKGROUND: Extracellular vesicles (EVs) are considered as crucial players in a wide variety of biological processes. Although their importance in joint diseases or infections has been shown by numerous studies, much less is known about their function in periprosthetic joint infection (PJI). Our aim was to investigate activated polymorphonuclear (PMN)-derived synovial EVs in patients with PJI. QUESTIONS/PURPOSES: (1) Is there a difference in the number and size of extracellular vesicles between periprosthetic joint aspirates of patients with PJI and aseptic loosening? (2) Are these vesicles morphologically different in the two groups? (3) Are there activated PMN-derived EVs in septic samples evaluated by flow cytometry after CD177 labelling? (4) Is there a difference in the protein composition carried by septic and aseptic vesicles? METHODS: Thirty-four patients (n = 34) were enrolled into our investigation, 17 with PJI and 17 with aseptic prosthesis loosening. Periprosthetic joint fluid was aspirated and EVs were separated. Samples were analysed by nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM) and flow cytometry (after Annexin V and CD177 labelling). The protein content of the EVs was studied by mass spectrometry (MS). RESULTS: NTA showed particle size distribution in both groups between 150 nm and 450 nm. The concentration of EVs was significantly higher in the septic samples (p = 0.0105) and showed a different size pattern as compared to the aseptic ones. The vesicular nature of the particles was confirmed by TEM and differential detergent lysis. In the septic group, FC analysis showed a significantly increased event number both after single and double labelling with fluorochrome conjugated Annexin V (p = 0.046) and Annexin V and anti-CD177 (p = 0.0105), respectively. MS detected a significant difference in the abundance of lactotransferrin (p = 0.00646), myeloperoxidase (p = 0.01061), lysozyme C (p = 0.04687), annexin A6 (p = 0.03921) and alpha-2-HS-glycoprotein (p = 0.03146) between the studied groups. CONCLUSIONS: An increased number of activated PMN derived EVs were detected in the synovial fluid of PJI patients with a characteristic size distribution and a specific protein composition. The activated PMNs-derived extracellular vesicles can be potential biomarkers of PJI

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    No full text
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles ("MISEV") guidelines for the field in 2014. We now update these "MISEV2014" guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points
    corecore