42 research outputs found

    Exhumation of the Sierra de Cameros (Iberian Range, Spain): constraints from low-temperature thermochronology

    Get PDF
    We present new fission-track and (U–Th)/He data from apatite and zircon in order to reconstruct the exhumation of the Sierra de Cameros, in the northwestern part of Iberian Range, Spain. Zircon fission-track ages from samples from the depocentre of the basin were reset during the metamorphic peak at approximately 100 Ma. Detrital apatites from the uppermost sediments retain fission-track age information that is older than the sediment deposition age, indicating that these rocks have not exceeded 110 8C. Apatites from deeper in the stratigraphic sequence of the central part of the basin have fission-track ages of around 40 Ma, significantly younger than the stratigraphic age, recording the time of cooling after peak metamorphic conditions. Apatite (U–Th)/He ages in samples from these sediments are 31–40 Ma and record the last period of cooling during Alpine compression. The modelled thermal history derived from the uppermost sediments indicates that the thermal pulse associated with peak metamorphism was rapid, and that the region has cooled continuously to the present. The estimated palaeogeothermal gradient is around 86 8C km21 and supports a tectonic model with a thick sedimentary fill (c. 8 km) and explains the origin of the low-grade metamorphism observed in the oldest sediments

    Natural age dispersion arising from the analysis of broken crystals, part II. Practical application to apatite (U-Th)/He thermochronometry

    Get PDF
    We describe a new numerical inversion approach to deriving thermal history information from a range of naturally dispersed single grain apatite (U-Th)/He ages. The approach explicitly exploits the information about the shape of the 4He diffusion profile within individual grains that is inherent in the pattern of dispersion that arises from the common and routine practice of analysing broken crystals. Additional dispersion arising from differences in grain size and in U and Th concentration of grains, and the resultant changes to helium diffusivity caused by differential accumulation and annealing of radiation damage, is explicitly included. In this approach we calculate the ingrowth and loss, due to both thermal diffusion and the effects of α-ejection, of helium over time using a finite cylinder geometry. Broken grains are treated explicitly as fragments of an initially larger crystal. The initial grain lengths, L0, can be treated as unknown parameters to be estimated, although this is computationally demanding. A practical solution to the problem of solving for the unknown initial grain lengths is to simply apply a constant and sufficiently long L0 value to each fragment. We found that a good value for L0 was given by the maximum fragment length plus two times the maximum radius of a given set of fragments. Currently whole crystals and fragments with one termination are taken into account. A set of numerical experiments using synthetic fragment ages generated for increasingly complex thermal histories, and including realistic amounts of random noise (5-15%), are presented and show that useful thermal history information can be extracted from datasets showing very large dispersion. These include experiments where dispersion arises only from fragmentation of a single grain (length 400Όm and radius 75Όm, c. 6-50% dispersion), including the effects of grain size variation (for spherical equivalent grain radii between 74-122 Όm, c. 10-70% dispersion) and the combined effects of fragmentation, grain size and radiation damage (for eU between 5-150 ppm, c.10-107% dispersion). Additionally we show that if the spherical equivalent radius of a broken grain is used as a measure of the effective diffusion domain for thermal history inversions then this will likely lead to erroneous thermal histories being obtained in many cases. The viability of the new technique is demonstrated for a real data set of 25 single grain (U-Th)/He apatite ages obtained for a gabbro sample from the BK-1 (Bierkraal) borehole drilled through the Bushveld Complex in South Africa. The inversion produces a well constrained thermal history consistent with both the (U-Th)/He data and available fission track analysis data. The advantage of the new approach is that it can explicitly accommodate all the details of conventional schemes, such as the effects of temporally variable diffusivity, zonation of U and Th and arbitrary grain size variations, and it works equally effectively for whole or broken crystals, and for the most common situation where a mixture of both are analysed. For the routine application of the apatite (U-Th)/He thermochronometry technique with samples where whole apatite grains are rare our experiments indicate that 15-20 single grain analyses are typically required to characterise the age dispersion pattern of a sample. The experiments also suggest that picking very short crystal fragments as well as long fragments, or even deliberately breaking long crystals to maximise the age dispersion in some cases, would ensure the best constraints on the thermal history models. The inversion strategy described in this paper is likely also directly applicable to other thermochronometers, such as the apatite, rutile and titanite U-Pb systems, where the diffusion domain is approximated by the physical grain size

    Early Cenozoic denudation of central west Britain in response to transient and permanent uplift above a mantle plume

    Get PDF
    Upwelling mantle plumes beneath continental crust are predicted to produce difficult to quantify, modest uplift and denudation. The contribution of permanent and transient components to the uplift is also difficult to distinguish. A pulse of denudation in Britain in the Early Paleogene has been linked, although with some controversy, with the arrival of the proto-Iceland mantle plume. In this contribution we show that combining apatite and zircon (U-Th-Sm)/He and apatite fission track analyses from central west Britain with numerical modeling clearly identifies a pulse of early Cenozoic denudation. The data indicate that rock uplift and denudation were centered on the northern East Irish Sea Basin and 1.0–2.4 km of rocks were removed during the latest Cretaceous-early Paleogene. Uplift and erosion appears to have started a few million years before the earliest magmatism in the region. The regional denudation pattern mirrors the distribution of low-density magmatic rocks that has been imaged in the deep crust. However, the injection of the underplating melt is not enough to account for the total denudation. An additional regional uplift of at least 300 m is required, which is consistent with a transient thermal effect from the hot mantle plume. The rapid exhumation event ceased by ~40 Ma and the data do not require significant Neogene exhumation

    Spatio-temporal trends in normal-fault segmentation recorded by low-temperature thermochronology: Livingstone fault scarp, Malawi Rift, East African Rift System

    Get PDF
    The evolution of through-going normal-fault arrays from initial nucleation to growth and subsequent interaction and mechanical linkage is well documented in many extensional provinces. Over time, these processes lead to predictable spatial and temporal variations in the amount and rate of displacement accumulated along strike of individual fault segments, which should be manifested in the patterns of footwall exhumation. Here, we investigate the along-strike and vertical distribution of low-temperature apatite (U–Th)/He (AHe) cooling ages along the bounding fault system, the Livingstone fault, of the Karonga Basin of the northern Malawi Rift. The fault evolution and linkage from rift initiation to the present day has been previously constrained through investigations of the hanging wall basin fill. The new cooling ages from the footwall of the Livingstone fault can be related to the adjacent depocentre evolution and across a relay zone between two palaeo-fault segments. Our data are complimented by published apatite fission-track (AFT) data and reveal significant variation in rock cooling history along-strike: the centre of the footwall yields younger cooling ages than the former tips of earlier fault segments that are now linked. This suggests that low-temperature thermochronology can detect fault interactions along strike. That these former segment boundaries are preserved within exhumed footwall rocks is a function of the relatively recent linkage of the system. Our study highlights that changes in AHe (and potentially AFT) ages associated with the along-strike displacement profile can occur over relatively short horizontal distances (of a few kilometres). This is fundamentally important in the assessment of the vertical cooling history of footwalls in extensional systems: temporal differences in the rate of tectonically driven exhumation at a given location along fault strike may be of greater importance in controlling changes in rates of vertical exhumation than commonly invoked climatic fluctuations

    The chronology and tectonic style of landscape evolution along the elevated Atlantic continental margin of South Africa resolved by joint apatite fission track and (U-Th-Sm)/He thermochronology

    Full text link
    corecore