409 research outputs found
Effects of Acrylic Restorations on the Periodontium of Monkeys
Replanted teeth that had an acrylic restoration in the middle third of their roots were studied from three days to six months after grafting. The study revealed that the acrylic obturator elicited epithelial proliferation, fibrous encapsulation, moderate chronic inflammation, and adjacent alveolar bone loss.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68162/2/10.1177_00220345720510052201.pd
Residual cognitive deficits 50 years after lead poisoning during childhood
The long term neurobehavioural consequences of childhood lead poisoning are not known. In this study adult subjects with a documented history of lead poisoning before age 4 and matched controls were examined with an abbreviated battery of neuropsychological tests including measures of attention, reasoning, memory, motor speed, and current mood. The subjects exposed to lead were inferior to controls on almost all of the cognitive tasks. This pattern of widespread deficits resembles that found in children evaluated at the time of acute exposure to lead rather than the more circumscribed pattern typically seen in adults exposed to lead. Despite having completed as many years of schooling as controls, the subjects exposed to lead were lower in lifetime occupational status. Within the exposed group, performance on the neuropsychological battery and occupational status were related, consistent with the presumed impact of limitations in neuropsychological functioning on everyday life. The results suggest that many subjects exposed to lead suffered acute encephalopathy in childhood which resolved into a chronic subclinical encephalopathy with associated cognitive dysfunction still evident in adulthood. These findings lend support to efforts to limit exposure to lead in childhood
Automated reconstruction of whole-embryo cell lineages by learning from sparse annotations
We present a method to automatically identify and track nuclei in time-lapse microscopy recordings of entire developing embryos. The method combines deep learning and global optimization. On a mouse dataset, it reconstructs 75.8% of cell lineages spanning 1 h, as compared to 31.8% for the competing method. Our approach improves understanding of where and when cell fate decisions are made in developing embryos, tissues, and organs
Evolution of active and polar photospheric magnetic fields during the rise of Cycle 24 compared to previous cycles
The evolution of the photospheric magnetic field during the declining phase
and minimum of Cycle 23 and the recent rise of Cycle 24 are compared with the
behavior during previous cycles. We used longitudinal full-disk magnetograms
from the NSO's three magnetographs at Kitt Peak, the Synoptic Optical Long-term
Investigations of the Sun (SOLIS) Vector Spectro-Magnetograph (VSM), the
Spectromagnetograph and the 512-Channel Magnetograph instruments, and
longitudinal full-disk magnetograms from the Mt. Wilson 150-foot tower. We
analyzed 37 years of observations from these two observatories that have been
observing daily, weather permitting, since 1974, offering an opportunity to
study the evolving relationship between the active region and polar fields in
some detail over several solar cycles. It is found that the annual averages of
a proxy for the active region poloidal magnetic field strength, the magnetic
field strength of the high-latitude poleward streams, and the time derivative
of the polar field strength are all well correlated in each hemisphere. These
results are based on statistically significant cyclical patterns in the active
region fields and are consistent with the Babcock-Leighton phenomenological
model for the solar activity cycle. There was more hemispheric asymmetry in the
activity level, as measured by total and maximum active region flux, during
late Cycle 23 (after around 2004), when the southern hemisphere was more
active, and Cycle 24 up to the present, when the northern hemisphere has been
more active, than at any other time since 1974. The active region net proxy
poloidal fields effectively disappeared in both hemispheres around 2004, and
the polar fields did not become significantly stronger after this time. We see
evidence that the process of Cycle 24 field reversal has begun at both poles.Comment: Accepted for publication in Solar Physic
Small-scale solar magnetic fields
As we resolve ever smaller structures in the solar atmosphere, it has become
clear that magnetism is an important component of those small structures.
Small-scale magnetism holds the key to many poorly understood facets of solar
magnetism on all scales, such as the existence of a local dynamo, chromospheric
heating, and flux emergence, to name a few. Here, we review our knowledge of
small-scale photospheric fields, with particular emphasis on quiet-sun field,
and discuss the implications of several results obtained recently using new
instruments, as well as future prospects in this field of research.Comment: 43 pages, 18 figure
Solar Intranetwork Magnetic Elements: bipolar flux appearance
The current study aims to quantify characteristic features of bipolar flux
appearance of solar intranetwork (IN) magnetic elements. To attack such a
problem, we use the Narrow-band Filter Imager (NFI) magnetograms from the Solar
Optical Telescope (SOT) on board \emph{Hinode}; these data are from quiet and
an enhanced network areas. Cluster emergence of mixed polarities and IN
ephemeral regions (ERs) are the most conspicuous forms of bipolar flux
appearance within the network. Each of the clusters is characterized by a few
well-developed ERs that are partially or fully co-aligned in magnetic axis
orientation. On average, the sampled IN ERs have total maximum unsigned flux of
several 10^{17} Mx, separation of 3-4 arcsec, and a lifetime of 10-15 minutes.
The smallest IN ERs have a maximum unsigned flux of several 10^{16} Mx,
separations less than 1 arcsec, and lifetimes as short as 5 minutes. Most IN
ERs exhibit a rotation of their magnetic axis of more than 10 degrees during
flux emergence. Peculiar flux appearance, e.g., bipole shrinkage followed by
growth or the reverse, is not unusual. A few examples show repeated
shrinkage-growth or growth-shrinkage, like magnetic floats in the dynamic
photosphere. The observed bipolar behavior seems to carry rich information on
magneto-convection in the sub-photospheric layer.Comment: 26 pages, 14 figure
Collaborative annotation of genes and proteins between UniProtKB/Swiss-Prot and dictyBase
UniProtKB/Swiss-Prot, a curated protein database, and dictyBase, the Model Organism Database for Dictyostelium discoideum, have established a collaboration to improve data sharing. One of the major steps in this effort was the ‘Dicty annotation marathon’, a week-long exercise with 30 annotators aimed at achieving a major increase in the number of D. discoideum proteins represented in UniProtKB/Swiss-Prot. The marathon led to the annotation of over 1000 D. discoideum proteins in UniProtKB/Swiss-Prot. Concomitantly, there were a large number of updates in dictyBase concerning gene symbols, protein names and gene models. This exercise demonstrates how UniProtKB/Swiss-Prot can work in very close cooperation with model organism databases and how the annotation of proteins can be accelerated through those collaborations
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC
Measurements of inclusive jet suppression in heavy ion collisions at the LHC
provide direct sensitivity to the physics of jet quenching. In a sample of
lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated
luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with
a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the
transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the
anti-kt algorithm with values for the distance parameter that determines the
nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of
the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp.
Jet production is found to be suppressed by approximately a factor of two in
the 10% most central collisions relative to peripheral collisions. Rcp varies
smoothly with centrality as characterized by the number of participating
nucleons. The observed suppression is only weakly dependent on jet radius and
transverse momentum. These results provide the first direct measurement of
inclusive jet suppression in heavy ion collisions and complement previous
measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables,
submitted to Physics Letters B. All figures including auxiliary figures are
available at
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
- …