127 research outputs found

    Thomas-Fermi-Poisson theory of screening for latterally confined and unconfined two-dimensional electron systems in strong magnetic fields

    Full text link
    We examine within the self-consistent Thomas-Fermi-Poisson approach the low-temperature screening properties of a two-dimensional electron gas (2DEG) subjected to strong perpendicular magnetic fields. Numerical results for the unconfined 2DEG are compared with those for a simplified Hall bar geometry realized by two different confinement models. It is shown that in the strongly non-linear screening limit of zero temperature the total variation of the screened potential is related by simple analytical expressions to the amplitude of an applied harmonic modulation potential and to the strength of the magnetic field.Comment: 12 pages, 12 figure

    In-situ focused ion beam implantation for the fabrication of a hot electron transistor oscillator structure

    Get PDF
    Recent advances using in situ focused ion beam implantation during an MBE growth interruption have been exploited to fabricate planar GaAs hot electron structures without the need for shallow ohmic contacts. This novel fabrication route shows a very high yield and has been used to demonstrate a prototype high-frequency oscillator structure based on electron multiplication in the base layer. Existing devices show transfer factors in excess of unity as well as reversal of the base current at high injection levels, which are the prerequisites for oscillator action. Future improvements in device design are discussed

    La cryptococcose neuro-méningée au Mali

    Get PDF
    Cryptococcal meningitis is the most common fatal central nervous system infection in AIDS patients in Sub-Saharan Africa. The purpose of this prospective study conducted from March 2003 to February 2004 in the internal medicine and infectious diseases departments of the Point G University Hospital Center was to investigate the clinical, prognostic and epidemiological profile of Cryptococcus neoformans infection in patients hospitalized for brain and meningeale infection (BMI). Diagnosis of neuromeningeal cryptococcosis (NMC) was based on positive identification of Cryptococcus by direct exam of the cebrospinal fluid (CSF) after India ink staining and/or culture on Sabouraud medium without actidione. During the study period, a total of 569 patients were hospitalized including 235 (41.3%) with HIV infection. Overall C. neoformans was identified in 14 patients. Median patient age was 39 ± 8 years. There was a male preponderance with a sex ratio of 1.8 (9 men/5 women). Patients with BMI were HIV positive in 85.7% of cases (n=12) and HIV-negative in 14.3% (n=2). The overall and HIV-specific prevalence of BMI was 2.5% and 5.1% respectively. The CD4 lymphocyte count was between 1 and 49 cells/mm3 in 64.3% of cases. The main clinical symptoms were cephalea in 85.7% of cases, altered consciousness in 50% and nausea/vomiting in 35.7%. Neurological manifestations (hemiparesis and cranial nerve deficit) were noted in 14.3%. HIV infection is the main purveyor of NMC in Mali. The actual incidence of cryptococcosis is unclear due to the poor sensitivity of diagnostic techniques. This study highlights diagnostic difficulties related to clinical polymorphism and poor technical facilities. Agglutination testing of blood and CSF is recommended, but mortality remains

    Search for supersymmetry with multiple charged leptons in proton-proton collisions at sqrt(s) = 13 TeV

    Get PDF
    Results are reported from a search for physics beyond-the-standard-model, such as supersymmetry, in final states with at least three charged leptons, in any combination of electrons or muons. The data sample corresponds to an integrated luminosity of 2.3 inverse femtobarns of proton-proton collisions at sqrt(s) = 13 TeV, recorded by the CMS experiment at the LHC in 2015. Two jets are required in each event, providing good sensitivity to strong production of gluinos and squarks. The search regions, sensitive to a range of different supersymmetry scenarios, are defined using the number of jets tagged as originating from bottom quarks, the sum of the magnitudes of the transverse momenta of the jets, the imbalance in the overall transverse momentum in the event, and the invariant mass of opposite-sign, same-flavor lepton pairs. The event yields observed in data are consistent with the expected background contributions from standard model processes. These results are used to derive limits in terms of R-parity conserving simplified models of supersymmetry that describe strong production of gluinos and squarks. Model-independent limits are presented to facilitate the reinterpretation of the results in a broad range of scenarios for physics beyond the standard model

    Search for heavy resonances decaying into a Z or W boson and a Higgs boson in final states with leptons and b-jets in 139 fb−1 of pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    This article presents a search for new resonances decaying into a Z or W boson and a 125 GeV Higgs boson h, and it targets the νν¯¯¯bb¯¯, ℓ+ℓ−bb¯¯, or ℓ±νbb¯¯ final states, where ℓ = e or μ, in proton-proton collisions at s√ = 13 TeV. The data used correspond to a total integrated luminosity of 139 fb−1 collected by the ATLAS detector during Run 2 of the LHC at CERN. The search is conducted by examining the reconstructed invariant or transverse mass distributions of Zh or Wh candidates for evidence of a localised excess in the mass range from 220 GeV to 5 TeV. No significant excess is observed and 95% confidence-level upper limits between 1.3 pb and 0.3 fb are placed on the production cross section times branching fraction of neutral and charged spin-1 resonances and CP-odd scalar bosons. These limits are converted into constraints on the parameter space of the Heavy Vector Triplet model and the two-Higgs-doublet model

    The ATLAS trigger system for LHC Run 3 and trigger performance in 2022

    Get PDF
    The ATLAS trigger system is a crucial component of the ATLAS experiment at the LHC. It is responsible for selecting events in line with the ATLAS physics programme. This paper presents an overview of the changes to the trigger and data acquisition system during the second long shutdown of the LHC, and shows the performance of the trigger system and its components in the proton-proton collisions during the 2022 commissioning period as well as its expected performance in proton-proton and heavy-ion collisions for the remainder of the third LHC data-taking period (2022–2025)

    Search for the Zγ decay mode of new high-mass resonances in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This letter presents a search for narrow, high-mass resonances in the Zγ final state with the Z boson decaying into a pair of electrons or muons. The √s = 13 TeV pp collision data were recorded by the ATLAS detector at the CERN Large Hadron Collider and have an integrated luminosity of 140 fb−1. The data are found to be in agreement with the Standard Model background expectation. Upper limits are set on the resonance production cross section times the decay branching ratio into Zγ. For spin-0 resonances produced via gluon–gluon fusion, the observed limits at 95% confidence level vary between 65.5 fb and 0.6 fb, while for spin-2 resonances produced via gluon–gluon fusion (or quark–antiquark initial states) limits vary between 77.4 (76.1) fb and 0.6 (0.5) fb, for the mass range from 220 GeV to 3400 GeV

    Study of Z → llγ decays at √s = 8 TeV with the ATLAS detector

    Get PDF
    This paper presents a study of Z → llγ decays with the ATLAS detector at the Large Hadron Collider. The analysis uses a proton–proton data sample corresponding to an integrated luminosity of 20.2 fb−1 collected at a centre-ofmass energy √s = 8 TeV. Integrated fiducial cross-sections together with normalised differential fiducial cross-sections, sensitive to the kinematics of final-state QED radiation, are obtained. The results are found to be in agreement with stateof-the-art predictions for final-state QED radiation. First measurements of Z → llγ γ decays are also reported

    Search for third-generation vector-like leptons in pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    A search for vector-like leptons in multilepton (two, three, or four-or-more electrons plus muons) final states with zero or more hadronic τ-lepton decays is presented. The search is performed using a dataset corresponding to an integrated luminosity of 139 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the LHC. To maximize the separation of signal and background, a machine-learning classifier is used. No excess of events is observed beyond the Standard Model expectation. Using a doublet vector-like lepton model, vector-like leptons coupling to third-generation Standard Model leptons are excluded in the mass range from 130 GeV to 900 GeV at the 95% confidence level, while the highest excluded mass is expected to be 970 GeV

    Search for heavy Higgs bosons with flavour-violating couplings in multi-lepton plus b-jets final states in pp collisions at 13 TeV with the ATLAS detector

    Get PDF
    A search for new heavy scalars with flavour-violating decays in final states with multiple leptons and b-tagged jets is presented. The results are interpreted in terms of a general two-Higgs-doublet model involving an additional scalar with couplings to the top-quark and the three up-type quarks (ρtt, ρtc, and ρtu). The targeted signals lead to final states with either a same-sign top-quark pair, three top-quarks, or four top-quarks. The search is based on a data sample of proton-proton collisions at √s = 13 TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb−1. Events are categorised depending on the multiplicity of light charged leptons (electrons or muons), total lepton charge, and a deep-neural-network output to enhance the purity of each of the signals. Masses of an additional scalar boson mH between 200 − 630 GeV with couplings ρtt = 0.4, ρtc = 0.2, and ρtu = 0.2 are excluded at 95% confidence level. Additional interpretations are provided in models of R-parity violating supersymmetry, motivated by the recent flavour and (g − 2)μ anomalies
    corecore