2,107 research outputs found

    The performance of the LHCf detector for hadronic showers

    Full text link
    The Large Hadron Collider forward (LHCf) experiment has been designed to use the LHC to benchmark the hadronic interaction models used in cosmic-ray physics. The LHCf experiment measures neutral particles emitted in the very forward region of LHC collisions. In this paper, the performances of the LHCf detectors for hadronic showers was studied with MC simulations and beam tests. The detection efficiency for neutrons is from 60% to 70% above 500 GeV. The energy resolutions are about 40% and the position resolution is 0.1 to 1.3mm depend on the incident energy for neutrons. The energy scale determined by the MC simulations and the validity of the MC simulations were examined using 350 GeV proton beams at the CERN-SPS.Comment: 15pages, 19 figure

    Measurement of forward neutral pion transverse momentum spectra for s\sqrt{s} = 7TeV proton-proton collisions at LHC

    Full text link
    The inclusive production rate of neutral pions in the rapidity range greater than y=8.9y=8.9 has been measured by the Large Hadron Collider forward (LHCf) experiment during LHC s=7\sqrt{s}=7\,TeV proton-proton collision operation in early 2010. This paper presents the transverse momentum spectra of the neutral pions. The spectra from two independent LHCf detectors are consistent with each other and serve as a cross check of the data. The transverse momentum spectra are also compared with the predictions of several hadronic interaction models that are often used for high energy particle physics and for modeling ultra-high-energy cosmic-ray showers.Comment: 18 Pages, 10 figures, submitted to Phys. Rev.

    Measurement of zero degree single photon energy spectra for sqrt(s) = 7TeV proton-proton collisions at LHC

    Get PDF
    In early 2010, the Large Hadron Collider forward (LHCf) experiment measured very forward neutral particle spectra in LHC proton-proton collisions. From a limited data set taken under the best beam conditions (low beam-gas background and low occurance of pile-up events), the single photon spectra at sqrt(s)=7TeV and pseudo-rapidity (eta) ranges from 8.81 to 8.99 and from 10.94 to infinity were obtained for the first time and are reported in this paper. The spectra from two independent LHCf detectors are consistent with one another and serve as a cross check of the data. The photon spectra are also compared with the predictions of several hadron interaction models that are used extensively for modeling ultra high energy cosmic ray showers. Despite conservative estimates for the systematic errors, none of the models agree perfectly with the measurements. A notable difference is found between the data and the DPMJET 3.04 and PYTHIA 8.145 hadron interaction models above 2TeV where the models predict higher photon yield than the data. The QGSJET II-03 model predicts overall lower photon yield than the data, especially above 2TeV in the rapidity range 8.81<eta<8.99

    Developing a High Resolution ZDC for the EIC

    Get PDF
    The Electron Ion Collider offers the opportunity to make un-paralleled multidimen- sional measurements of the spin structure of the proton and nuclei, as well as a study of the onset of partonic saturation at small Bjorken-x [1]. An important requirement of the physics program is the tagging of spectator neutrons and the identification of forward photons. We propose to design and build a Zero Degree Calorimeter, or ZDC, to measure photons and neutrons with excellent energy & position resolution

    Results from the LHCf experiment

    Get PDF
    LHCf is an experiment designed to study the very forward emission of neutral particles produced in collisions at the LHC. Its results can be used to calibrate the hadron interaction models of the Monte Carlo codes which allow the interpretation of energy spectrum and composition of high-energy cosmic rays as measured by air shower ground detectors. The experiment has already completed taking data in proton-proton collisions at √s = 900 GeV and at √s = 7TeV during 2009 and 2010. The detectors are now being upgraded and they will be installed again in the LHC tunnel for proton-ion collisions and for operation with protons at √s = 14TeV. In this paper results and comparisons with the predictions obtained from Monte Carlo simulations will be reported

    First results from LHCf for forward physics in √s = 7TeV proton-proton interactions

    Get PDF
    The LHCf Collaboration has completed the first step of its scheduled physics program for the study of emission of neutral particles in the forward region of proton-proton (pp) interactions at LHC. Between 2009 and 2010 the LHCf experiment has successfully taken data at 900 GeV and 7TeV total energy in the center-of-mass frame of reference (CM). After a short presentation of the experimental apparatus, the results for the γ-ray spectrum at √s = 7TeV are presented in this paper

    Comparison of hadron interaction models with measurement of forward spectra by the LHCf apparatus

    Get PDF
    The LHCf experiment is a forward experiment of LHC. The two LHCf detectors, each composed of a pair of sampling and imaging calorimeters, have been installed at the forward region of IP1 to measure energy and transverse momentum spectra of neutral particles emitted in the very forward region of LHC collisions (η > 8.4). The operation at 900 GeV and 7TeV pp collisions has been completed in the middle of July 2010. We present some preliminary results in this paper

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for direct stau production in events with two hadronic tau-leptons in root s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of the supersymmetric partners ofτ-leptons (staus) in final stateswith two hadronically decayingτ-leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of139fb−1, recorded with the ATLAS detector at the LargeHadron Collider at a center-of-mass energy of 13 TeV. No significant deviation from the expected StandardModel background is observed. Limits are derived in scenarios of direct production of stau pairs with eachstau decaying into the stable lightest neutralino and oneτ-lepton in simplified models where the two staumass eigenstates are degenerate. Stau masses from 120 GeV to 390 GeV are excluded at 95% confidencelevel for a massless lightest neutralino

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV
    corecore