477 research outputs found

    Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal VO2 beams

    Full text link
    Spatial phase inhomogeneity at the nano- to microscale is widely observed in strongly-correlated electron materials. The underlying mechanism and possibility of artificially controlling the phase inhomogeneity are still open questions of critical importance for both the phase transition physics and device applications. Lattice strain has been shown to cause the coexistence of metallic and insulating phases in the Mott insulator VO2. By continuously tuning strain over a wide range in single-crystal VO2 micro- and nanobeams, here we demonstrate the nucleation and manipulation of one-dimensionally ordered metal-insulator domain arrays along the beams. Mott transition is achieved in these beams at room temperature by active control of strain. The ability to engineer phase inhomogeneity with strain lends insight into correlated electron materials in general, and opens opportunities for designing and controlling the phase inhomogeneity of correlated electron materials for micro- and nanoscale device applications.Comment: 14 pages, 4 figures, with supplementary informatio

    A Spontaneous Mutation in Contactin 1 in the Mouse

    Get PDF
    Mutations in the gene encoding the immunoglobulin-superfamily member cell adhesion molecule contactin1 (CNTN1) cause lethal congenital myopathy in human patients and neurodevelopmental phenotypes in knockout mice. Whether the mutant mice provide an accurate model of the human disease is unclear; resolving this will require additional functional tests of the neuromuscular system and examination of Cntn1 mutations on different genetic backgrounds that may influence the phenotype. Toward these ends, we have analyzed a new, spontaneous mutation in the mouse Cntn1 gene that arose in a BALB/c genetic background. The overt phenotype is very similar to the knockout of Cntn1, with affected animals having reduced body weight, a failure to thrive, locomotor abnormalities, and a lifespan of 2–3 weeks. Mice homozygous for the new allele have CNTN1 protein undetectable by western blotting, suggesting that it is a null or very severe hypomorph. In an analysis of neuromuscular function, neuromuscular junctions had normal morphology, consistent with previous studies in knockout mice, and the muscles were able to generate appropriate force when normalized for their reduced size in late stage animals. Therefore, the Cntn1 mutant mice do not show evidence for a myopathy, but instead the phenotype is likely to be caused by dysfunction in the nervous system. Given the similarity of CNTN1 to other Ig-superfamily proteins such as DSCAMs, we also characterized the expression and localization of Cntn1 in the retinas of mutant mice for developmental defects. Despite widespread expression, no anomalies in retinal anatomy were detected histologically or using a battery of cell-type specific antibodies. We therefore conclude that the phenotype of the Cntn1 mice arises from dysfunction in the brain, spinal cord or peripheral nervous system, and is similar in either a BALB/c or B6;129;Black Swiss background, raising a possible discordance between the mouse and human phenotypes resulting from Cntn1 mutations

    Efficacy of Synaptic Inhibition Depends on Multiple, Dynamically Interacting Mechanisms Implicated in Chloride Homeostasis

    Get PDF
    Chloride homeostasis is a critical determinant of the strength and robustness of inhibition mediated by GABAA receptors (GABAARs). The impact of changes in steady state Cl− gradient is relatively straightforward to understand, but how dynamic interplay between Cl− influx, diffusion, extrusion and interaction with other ion species affects synaptic signaling remains uncertain. Here we used electrodiffusion modeling to investigate the nonlinear interactions between these processes. Results demonstrate that diffusion is crucial for redistributing intracellular Cl− load on a fast time scale, whereas Cl−extrusion controls steady state levels. Interaction between diffusion and extrusion can result in a somato-dendritic Cl− gradient even when KCC2 is distributed uniformly across the cell. Reducing KCC2 activity led to decreased efficacy of GABAAR-mediated inhibition, but increasing GABAAR input failed to fully compensate for this form of disinhibition because of activity-dependent accumulation of Cl−. Furthermore, if spiking persisted despite the presence of GABAAR input, Cl− accumulation became accelerated because of the large Cl− driving force that occurs during spikes. The resulting positive feedback loop caused catastrophic failure of inhibition. Simulations also revealed other feedback loops, such as competition between Cl− and pH regulation. Several model predictions were tested and confirmed by [Cl−]i imaging experiments. Our study has thus uncovered how Cl− regulation depends on a multiplicity of dynamically interacting mechanisms. Furthermore, the model revealed that enhancing KCC2 activity beyond normal levels did not negatively impact firing frequency or cause overt extracellular K− accumulation, demonstrating that enhancing KCC2 activity is a valid strategy for therapeutic intervention

    Stability in Ecosystem Functioning across a Climatic Threshold and Contrasting Forest Regimes

    Get PDF
    Classical ecological theory predicts that changes in the availability of essential resources such as nitrogen should lead to changes in plant community composition due to differences in species-specific nutrient requirements. What remains unknown, however, is the extent to which climate change will alter the relationship between plant communities and the nitrogen cycle. During intervals of climate change, do changes in nitrogen cycling lead to vegetation change or do changes in community composition alter the nitrogen dynamics? We used long-term ecological data to determine the role of nitrogen availability in changes of forest species composition under a rapidly changing climate during the early Holocene (16k to 8k cal. yrs. BP). A statistical computational analysis of ecological data spanning 8,000 years showed that secondary succession from a coniferous to deciduous forest occurred independently of changes in the nitrogen cycle. As oak replaced pine under a warming climate, nitrogen cycling rates increased. Interestingly, the mechanism by which the species interacted with nitrogen remained stable across this threshold change in climate and in the dominant tree species. This suggests that changes in tree population density over successional time scales are not driven by nitrogen availability. Thus, current models of forest succession that incorporate the effects of available nitrogen may be over-estimating tree population responses to changes in this resource, which may result in biased predictions of future forest dynamics under climate warming

    A Common KIF6 Polymorphism Increases Vulnerability to Low-Density Lipoprotein Cholesterol: Two Meta-Analyses and a Meta-Regression Analysis

    Get PDF
    Background: We sought to determine if a common polymorphism can influence vulnerability to LDL cholesterol, and thereby influence the clinical benefit derived from therapies that reduce LDL cholesterol. Methods: We conducted a meta-analysis of the association between a common Trp719Arg polymorphism in the kinesin-like protein 6 (KIF6) gene and the risk of cardiovascular disease (CVD), and a meta-regression analysis to measure the effect modification of this polymorphism on the association between LDL cholesterol and the risk of CVD. We used this measure of genetic effect modification to predict the expected difference in clinical benefit among KIF6 719Arg allele carriers and non-carriers in response to therapies that reduce LDL cholesterol. We then conducted a meta-analysis of statin trials to compare the expected difference in clinical benefit with the observed difference during treatment with a statin. Results: In a meta-analysis involving 144,931 participants, the KIF6 719Arg allele was not associated with the relative risk (RR) of CVD (RR: 1.02, 95%CI: 0.98-1.07, p = 0.288). Meta-regression analysis involving 88,535 participants, however, showed that the 719Arg allele appears to influence the effect of LDL cholesterol on the risk of CVD. KIF6 carriers experienced a 13% greater reduction in the risk of CVD per mmol/L decrease in LDL cholesterol than non-carriers. We interpreted this difference as the expected difference in clinical benefit among KIF6 carriers and non-carriers in response to therapies that lower LDL cholesterol. The difference in clinical benefit predicted by the increased vulnerability to LDL cholesterol among KIF6 carriers (ratio of RR: 0.87, 95%CI: 0.80-0.94, p = 0.001) agreed very closely with the observed difference among 50,060 KIF6 carriers and non-carriers enrolled in 8 randomized trials of statin therapy (ratio of RR: 0.87, 95%CI: 0.77-0.99, p = 0.038). Conclusion: The KIF6 719Arg allele increases vulnerability to LDL cholesterol and thereby influences the expected clinical benefit of therapies that reduce LDL cholesterol. © 2011 Ference et al

    Comorbidity and Sex-Related Differences in Mortality in Oxygen-Dependent Chronic Obstructive Pulmonary Disease

    Get PDF
    Background: It is not known why survival differs between men and women in oxygen-dependent chronic obstructive pulmonary disease (COPD). The present study evaluates differences in comorbidity between men and women, and tests the hypothesis that comorbidity contributes to sex-related differences in mortality in oxygen-dependent COPD. Methods: National prospective study of patients aged 50 years or older, starting long-term oxygen therapy (LTOT) for COPD in Sweden between 1992 and 2008. Comorbidities were obtained from the Swedish Hospital Discharge Register. Sex-related differences in comorbidity were estimated using logistic regression, adjusting for age, smoking status and year of inclusion. The effect of comorbidity on overall mortality and the interaction between comorbidity and sex were evaluated using Cox regression, adjusting for age, sex, Pa O2 breathing air, FEV 1, smoking history and year of inclusion. Results: In total, 8,712 patients (55 % women) were included and 6,729 patients died during the study period. No patient was lost to follow-up. Compared with women, men had significantly more arrhythmia, cancer, ischemic heart disease and renal failure, and less hypertension, mental disorders, osteoporosis and rheumatoid arthritis (P,0.05 for all odds ratios). Comorbidity was an independent predictor of mortality, and the effect was similar for the sexes. Women had lower mortality, which remained unchanged even after adjusting for comorbidity; hazard ratio 0.73 (95 % confidence interval, 0.68–0.77; P,0.001)

    A New Model to Produce Infectious Hepatitis C Virus without the Replication Requirement

    Get PDF
    Numerous constraints significantly hamper the experimental study of hepatitis C virus (HCV). Robust replication in cell culture occurs with only a few strains, and is invariably accompanied by adaptive mutations that impair in vivo infectivity/replication. This problem complicates the production and study of authentic HCV, including the most prevalent and clinically important genotype 1 (subtypes 1a and 1b). Here we describe a novel cell culture approach to generate infectious HCV virions without the HCV replication requirement and the associated cell-adaptive mutations. The system is based on our finding that the intracellular environment generated by a West-Nile virus (WNV) subgenomic replicon rendered a mammalian cell line permissive for assembly and release of infectious HCV particles, wherein the HCV RNA with correct 5â€Č and 3â€Č termini was produced in the cytoplasm by a plasmid-driven dual bacteriophage RNA polymerase-based transcription/amplification system. The released particles preferentially contained the HCV-based RNA compared to the WNV subgenomic RNA. Several variations of this system are described with different HCV-based RNAs: (i) HCV bicistronic particles (HCVbp) containing RNA encoding the HCV structural genes upstream of a cell-adapted subgenomic replicon, (ii) HCV reporter particles (HCVrp) containing RNA encoding the bacteriophage SP6 RNA polymerase in place of HCV nonstructural genes, and (iii) HCV wild-type particles (HCVwt) containing unmodified RNA genomes of diverse genotypes (1a, strain H77; 1b, strain Con1; 2a, strain JFH-1). Infectivity was assessed based on the signals generated by the HCV RNA molecules introduced into the cytoplasm of target cells upon virus entry, i.e. HCV RNA replication and protein production for HCVbp in Huh-7.5 cells as well as for HCVwt in HepG2-CD81 cells and human liver slices, and SP6 RNA polymerase-driven firefly luciferase for HCVrp in target cells displaying candidate HCV surface receptors. HCV infectivity was inhibited by pre-incubation of the particles with anti-HCV antibodies and by a treatment of the target cells with leukocyte interferon plus ribavirin. The production of authentic infectious HCV particles of virtually any genotype without the adaptive mutations associated with in vitro HCV replication represents a new paradigm to decipher the requirements for HCV assembly, release, and entry, amenable to analyses of wild type and genetically modified viruses of the most clinically significant HCV genotypes

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  Όb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∌0) correlation that grows rapidly with increasing ÎŁETPb. A long-range “away-side” (Δϕ∌π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ÎŁETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁥2Δϕ modulation for all ÎŁETPb ranges and particle pT

    Protocol of a randomized controlled trial of the effectiveness of physician education and activation versus two rehabilitation programs for the treatment of Whiplash-associated Disorders: The University Health Network Whiplash Intervention Trial

    Get PDF
    Background: Whiplash injuries are an important public health problem that is associated with significant disability and high health care utilization. Recent cohort studies suggest that physician care may be the most effective treatment for patients with whiplash-associated disorders. However, these findings have not been tested in a randomized controlled trial. The purpose of this study is to determine which of physician care or two rehabilitation programs of care is most effective in improving recovery of patients with recent whiplash associated disorders. Methods and Design: We designed a pragmatic randomized clinical trial. A total of 444 participants (148 in each of three arms) who reside in Southern Ontario, Canada will be recruited from a large insurer. We will include individuals who are 18 years of age or older and who are diagnosed with Grade I or II Whiplash-associated Disorders. Participants will be randomized to physician-based education and activation or one of two rehabilitation programs of care currently in use in Ontario. Our primary outcome, self-rated global recovery and all secondary outcomes (neck pain intensity, whiplash disability, health-related quality of life, depressive symptomatology and satisfaction with care) will be measured at baseline by a trial coordinator and at 6 weeks, 3, 6, 9 and 12 months follow-up by an interviewer who is blind to the participants' baseline characteristics and treatment allocation. We will also collect information on general health status, other injuries, comorbidities, expectation of recovery, work status, pain coping, legal representation, and co-interventions. The primary intention-to-treat analysis will compare time to recovery between the three interventions. This trial will have 90% power at an alpha of 0.05 to detect a 20% difference in the rate of perceived recovery at one year. Secondary analyses will compare the health outcomes, rate of recurrence and the rate of adverse events between intervention groups. Conclusion: The results of this study will provide the public, clinicians and policy makers much needed evidence on the effectiveness of common approaches used to manage whiplash-associated disorders. © 2008 CÎté et al; licensee BioMed Central Ltd
    • 

    corecore