427 research outputs found

    Asymmetry Parameter of the K1(1270,1400)K_{1} (1270, 1400) by Analyzing the B→K1ΜΜˉB\to K_{1}\nu \bar{\nu} Transition Form Factors within QCD

    Full text link
    Separating the mixture of the K1(1270) K_{1}(1270) and K1(1400)K_{1}(1400) states, the B→K1(1270,1400)ΜΜˉB\to K_{1}(1270, 1400)\nu\bar{\nu} transition form factors are calculated in the three-point QCD sum rules approach. The longitudinal, transverse and total decay widths as well as the asymmetry parameter, characterizing the polarization of the axial K1(1270,1400)K_{1}(1270, 1400) and the branching ratio for these decays are evaluated.Comment: 25 pages, 3 figures, 3 table

    A demand-driven approach for a multi-agent system in Supply Chain Management

    Get PDF
    This paper presents the architecture of a multi-agent decision support system for Supply Chain Management (SCM) which has been designed to compete in the TAC SCM game. The behaviour of the system is demand-driven and the agents plan, predict, and react dynamically to changes in the market. The main strength of the system lies in the ability of the Demand agent to predict customer winning bid prices - the highest prices the agent can offer customers and still obtain their orders. This paper investigates the effect of the ability to predict customer order prices on the overall performance of the system. Four strategies are proposed and compared for predicting such prices. The experimental results reveal which strategies are better and show that there is a correlation between the accuracy of the models' predictions and the overall system performance: the more accurate the prediction of customer order prices, the higher the profit. © 2010 Springer-Verlag Berlin Heidelberg

    Grey-box model identification via evolutionary computing

    Get PDF
    This paper presents an evolutionary grey-box model identification methodology that makes the best use of a priori knowledge on a clear-box model with a global structural representation of the physical system under study, whilst incorporating accurate blackbox models for immeasurable and local nonlinearities of a practical system. The evolutionary technique is applied to building dominant structural identification with local parametric tuning without the need of a differentiable performance index in the presence of noisy data. It is shown that the evolutionary technique provides an excellent fitting performance and is capable of accommodating multiple objectives such as to examine the relationships between model complexity and fitting accuracy during the model building process. Validation results show that the proposed method offers robust, uncluttered and accurate models for two practical systems. It is expected that this type of grey-box models will accommodate many practical engineering systems for a better modelling accuracy

    Dynamical electron transport through a nanoelectromechanical wire in a magnetic field

    Full text link
    We investigate dynamical transport properties of interacting electrons moving in a vibrating nanoelectromechanical wire in a magnetic field. We have built an exactly solvable model in which electric current and mechanical oscillation are treated fully quantum mechanically on an equal footing. Quantum mechanically fluctuating Aharonov-Bohm phases obtained by the electrons cause nontrivial contribution to mechanical vibration and electrical conduction of the wire. We demonstrate our theory by calculating the admittance of the wire which are influenced by the multiple interplay between the mechanical and the electrical energy scales, magnetic field strength, and the electron-electron interaction

    Decreased Fibroblast and Increased Osteoblast Functions on Ionic Plasma Deposited Nanostructured Ti Coatings

    Get PDF
    Bioactive coatings are in high demand to control cellular functions for numerous medical devices. The objective of this in vitro study was to characterize for the first time fibroblast (fibrous scar tissue forming cells) adhesion and proliferation on an important polymeric biomaterial (silicone) coated with titanium using a novel ionic plasma deposition (IPD) process. Fibroblasts are one of the first anchorage-dependent cells to arrive at an implant surface during the wound healing process. Persistent excessive functions of fibroblasts have been linked to detrimental fibrous tissue formation which may cause implant failure. The IPD process creates a surface-engineered nanostructure (with features usually below 100 nm) by first using a vacuum to remove all contaminants, then guiding charged metallic ions or plasma to the surface of a medical device at ambient temperature. Results demonstrated that compared to currently used titanium and uncoated silicone, silicone coated with titanium using IPD significantly decreased fibroblast adhesion and proliferation. Results also showed competitively increased osteoblast (bone-forming cells) over fibroblast adhesion on silicone coated with titanium; in contrast, osteoblast adhesion was not competitively increased over fibroblast adhesion on uncoated silicone or titanium controls. In this manner, this study strongly suggests that IPD should be further studied for biomaterial applications in which fibrous tissue encapsulation is undesirable (such as for orthopedic implants, cardiovascular components, etc.)

    QCD sum rules analysis of the rare B_c \rar X\nu\bar{\nu} decays

    Full text link
    Taking into account the gluon correction contributions to the correlation function, the form factors relevant to the rare B_c \rar X \nu\bar{\nu} decays are calculated in the framework of the three point QCD sum rules, where XX stands for axial vector particle, AV(Ds1)AV(D_{s1}), and vector particles, V(D∗,Ds∗)V(D^*,D^*_s). The total decay width as well as the branching ratio of these decays are evaluated using the q2q^2 dependent expressions of the form factors. A comparison of our results with the predictions of the relativistic constituent quark model is presented.Comment: 21 Pages, 2 Figures and 5 Table

    The transition form factors for semi-leptonic weak decays of J/ψJ/\psi in QCD sum rules

    Full text link
    Within the Standard Model, we investigate the semi-leptonic weak decays of J/ψJ/\psi. The various form factors of J/ψJ/\psi transiting to a single charmed meson (D(d,s)(∗)D^{(*)}_{(d,s)}) are studied in the framework of the QCD sum rules. These form factors fully determine the rates of the weak semi-leptonic decays of J/ψJ/\psi and provide valuable information about the non-perturbative QCD effects. Our results indicate that the decay rate of the semi-leptonic weak decay mode J/ψ→Ds(∗)−+e++ÎœeJ/\psi \to D^{(*)-}_{s}+e^{+}+\nu_{e} is at order of 10−1010^{-10}.Comment: 28 pages, 6 figures, revised version to be published in Eur.Phys.J.

    Measurement of the Atmospheric Muon Spectrum from 20 to 3000 GeV

    Get PDF
    The absolute muon flux between 20 GeV and 3000 GeV is measured with the L3 magnetic muon spectrometer for zenith angles ranging from 0 degree to 58 degree. Due to the large exposure of about 150 m2 sr d, and the excellent momentum resolution of the L3 muon chambers, a precision of 2.3 % at 150 GeV in the vertical direction is achieved. The ratio of positive to negative muons is studied between 20 GeV and 500 GeV, and the average vertical muon charge ratio is found to be 1.285 +- 0.003 (stat.) +- 0.019 (syst.).Comment: Total 32 pages, 9Figure

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore