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ABSTRACT 

 

This paper presents an evolutionary grey-box model identification methodology that makes the best 

use of a-priori knowledge on a clear-box model with a global structural representation of the 

physical system under study, whilst incorporating accurate black-box models for immeasurable and 

local nonlinearities of a practical system. The evolutionary technique is applied to building 

dominant structural identification with local parametric tuning without the need of a differentiable 

performance index in the presence of noisy data. It is shown that the evolutionary technique 

provides an excellent fitting performance and is capable of accommodating multiple objectives such 

as to examine the relationships between model complexity and fitting accuracy during the model 

building process. Validation results show that the proposed method offers robust, uncluttered and 

accurate models for two practical systems. It is expected that this type of grey-box models will 

accommodate many practical engineering systems for a better modelling accuracy. 
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1.  INTRODUCTION 

 

The increasing demands on product ‘quality’ and ‘performance’ nowadays have generated a greater 

emphasis of knowledge acquisition for engineering systems. In many instances, this knowledge is 

modelled by a set of linear ordinary differential equations (ODEs) derived from the physical 

principles or operating mechanism of the system (Kemna and Mellichamp, 1995; Mattsson et al., 

1998; Vandemolengraft et al., 1994). Modelling based on the ODEs or the clear-box model as 

referred in this paper has the advantage of representing a wide range of nonlinear systems whilst 

retaining useful system structural information. Practical systems are, however, usually complicated 

and may involve unknown noises, nonlinearities and unseen dynamics that often appear as lumped 

modelling errors (Funkquist, 1997; Gawthrop et al., 1993; Tan et al., 1997). It is thus often 

impossible to identify every detailed nonlinearity to build an accurate clear-box model for a 

dynamic system. 

 

In contrast to the clear-box, black-box models such as nonlinear auto-regressive moving average or 

artificial neural network models may be employed to approximate a nonlinear system (Chen et al., 

1990; Leontaritis and Billings, 1985). However, physical significance or structural information of 

the system will be lost if such black-box models are attempted (Gawthrop et al., 1993; Gray et al., 

1998), since mappings between a black-box model and the set of ODEs of a nonlinear system are 

not bijective or equivalent. This unclear system representation highly restricts the system analysis 

to be carried out and is thus less applicable for control purposes. 

 

The underlying nonlinearities of a practical engineering system and some of its physical parameters 

are usually known a-priori. However, some of the, mostly minor, nonlinearities cannot be modelled 

accurately due to the system complexity and constraints on physical ability to measure. This is thus 

seen as a partially known system and may be best modelled as a grey-box (Forsell and Lindskog, 

1997; Gawthrop et al., 1993; Sjöberg and Raedt, 1997; Li et al., 1997). Since obtaining accurate 

system ODEs that have a focused nonlinear structure is desired in many applications (Gray et al., 

1998; Kemna and Mellichamp, 1995), a grey-box model to be established should explicitly utilise 

the a-priori knowledge such as those based on the clear nonlinear structure and parameters derived 

from physical laws. This forms the ‘clear’ part of the grey-box and the ‘black’ part will be used to 

approximate any neglected or immeasurable nonlinearities in the system. In such a grey-box 

representation, system structure will not be replaced by artificial structures as seen in the generic 
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black-box approximators. Hence, this modelling technique is different from the conventional clear 

or black-box models and should offer advantages over those methods. 

 

Such grey-box model identification is often a multi-modal optimisation problem in a multi-

dimensional space. The optimisation task is not suitable for conventional gradient-guided 

techniques, which require a differentiable objective function in a smooth search space. In addition, 

these techniques may encounter difficulties due to noisy data or system discontinuity, and may only 

offer “local optima” if the initial guess is inappropriate (Fonseca, 1995; Gray et al., 1996; 

Kristinsson and Dumont, 1992; Maclay and Dorey, 1993; Tan et al., 1997; Yao and Sethares, 

1994). These numerical difficulties can, however, be easily overcome by Darwinian-Wallace 

principle based evolutionary optimisation that explores a poorly understood solution space in 

parallel by intelligent trials without the need of differentiating the performance index or linearly 

separable parameters (Fogel, 1995; Michalewicz, 1994). Moreover, the evolutionary algorithm is 

capable of incorporating Pareto's optimality for multi-objective optimisation that allows engineers 

to examine different trade-offs between model complexity and fitting accuracy before final 

determination of a suitable grey-box model structure with optimised parameters optimised 

according to the engineer’s preferences. 

 

A simple and efficient grey-box model identification technique is developed in this paper, which is 

tractably enabled by genetic evolution and local learning. The evolutionary grey-box model 

identification is further extended for multi-objective optimisation to study the relationships between 

model complexity and fitting accuracy. The methodology is detailed with two nonlinear model 

identification examples, including a hydraulic nonlinear system in Section 2 and a neutron intensity 

control system in Section 3. Conclusions are drawn in Section 4. 

 

 

2.  A COUPLED NONLINEAR SYSTEM IDENTIFICATION PROBLEM 

 

2.1  The System and Measured Clear-Box Model 

A nonlinear coupled twin-tank hydraulic system that may also be extended to simulate heat-balance 

in chemical processes is shown in Fig. 1. Based on the physical law of Bernoulli’s mass-balance 

equation, a clear-box model of the system is given by (Tan, 1997) 
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Here the tanks are linked through a coupling pipe of an equivalent orifice area a1; the equivalent 

discharging area of Tank 2 is modelled by a2; the liquid level in Tank 1 is h1; that in Tank 2 is h2 

with a physical constraint being h2 > H3, the equivalent height of both the coupling and discharging 

pipes; C1 and C2 are equivalent discharge constants; A = 100 cm2 is the cross-sectional area of both 

tanks (which can be physically measured with a relatively high accuracy); Q1 and Q2 are the input 

flow rate per actuating volt of the pre- and power amplifiers for Tank 1 and Tank 2, respectively; 

and g = 981 cm s-2 the gravitational constant. Based on the manufacturer’s specification and further 

physical measurements at an operating level of [v1, v2] = [2.5V, 2.5V], the measured model 

parameters are shown in the second column of Table 1. 

 

[Table 1 here] 

[Fig. 1 here] 

 

To study this clear-box model obtained by the physical law and actual measurements, steps plus 

delayed small pseudo random binary sequences (PRBS) (Tan et al., 1997) were first used to excite 

the physical system at the operating levels of [v1, v2] = [2.5V, 2.5V] and [v1, v2] = [2.5V, 1.5V], 

respectively. The PRBS inputs were used in supplement to the steps to excite the high frequencies, 

and techniques for selecting the PRBS for the relevant frequency range were recommended by Tan 

(1997). The water levels of the two physical tanks, h1 and h2, were measured and shown in Fig. 2. 

 

[Fig. 2 here] 

 

The same input pattern of steps plus PRBS at the operating level of [v1, v2] = [2.5V, 2.5V] are then 

applied to the measured clear-box model. The absolute error residuals between the actual and 

measured model responses due to the model inaccuracy, e1 and e2, are shown in Fig. 3(a). To study 

the measured model accuracy and robustness at different operating level, the absolute error 

residuals between the actual and model responses at the operating point of [v1, v2] = [2.5V, 1.5V] 
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are shown in Fig. 3(b). The corresponding root mean-square (RMS) errors, i.e., 
n

e
RMS

n

i
i∑

== 1 , 

where n is the number of data points and e is the error between the actual and model responses, are 

given in the third row of Table 2. Although the measured clear-box is a nonlinear model, it can be 

seen that the errors are large and much dependent on the operating points. Moreover, due to the 

unknown and unattainable nonlinearities, empirical measuring shows that the ODE coefficients, C1 

and C2, are also operating-point dependent as indicated in Fig. 4. 

 

[Table 2] 

[Fig. 3 here] 

[Fig. 4 here] 

 

2.2  Identification of the Clear-Box Model 

2.2.1  Quasi-Newton's search method 

To derive an accurate clear-box model, the well-known gradient-guided search method of BFGS 

(Broydom, 1970; Fletcher, 1970; Golfarb, 1970; Shanno, 1970) Quasi-Newton's algorithm in 

Matlab optimisation toolbox (Grace, 1999) is used to identify the clear-box model in (1). Similar 

inputs of steps plus PRBS at the operating level of [v1, v2] = [2.5V, 2.5V] were used to identify the 

clear-box model of (1) using the Quasi-Newton's method such that the modelling error: 

 

 )()()()( 2211 tetWtetWJ +=  (2) 

 

is minimised. W1 and W2 can be distinctive weighting functions, which are here chosen to be 1 since 

no emphasis on transient or steady-state is placed. Without loss of generality, the L2 norm (similar 

to the RMS value) is used in this work, as linear norms in the Euclidean space are mutually 

bounded (i.e., metric equivalence). 

 

The Quasi-Newton’s method has however, converged to local optima and failed to identify an 

optimal clear-box model due to the nonlinear and sensory noisy data of the system. With different 

trial-and-error initial conditions, the best recommended ''local'' parameters from the Quasi-

Newton’s method are shown in the third column of Table 1. The absolute error residuals between 

the actual and model responses are shown in Fig. 5(a). To validate the model at different operating 
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point, error residuals at the operating level of [v1, v2] = [2.5V, 2.5V] are plotted in Fig. 5(b). The 

best local convergence trace of the Quasi-Newton’s method is shown in Fig. 6, and the 

corresponding RMS errors at the two different set of operating levels are shown in the fourth row of 

Table 2. It can be seen that the Quasi-Newton’s method has failed in this identification task with a 

much larger RMS errors than the measured model obtained from the manufacturer’s specifications. 

 

[Fig. 5 here] 

[Fig. 6 here] 

 

2.2.2  Evolutionary optimisation approach 

Evolutionary algorithm (EA) based identification technique has been applied to identify the clear-

box model of (1). EA evaluates performances of candidate solutions at multiple points 

simultaneously and thus efficiently approaches the global optimum. Before this simulated evolution 

process begins, an initial population of multiple chromosomes representing random candidate 

models is formed. Every such chromosome is assigned a fitness function and at each generation of 

search, multiple candidates are evaluated and the search will be directed intelligently according to 

the Darwin’s “survival-of-the-fittest” principle. Then useful search information and co-ordinates are 

exchanged and altered for the next generation of candidate solutions. This evolution cycle will be 

repeated until the final generation is reached or the solution has been found. For details of EA, 

readers may refer to Michalewicz (1994). 

 

Since gradient information can be estimated from the function evaluation (Adby and Dempster, 

1974), the mutation operation in EAs can be further fine-tuned or realised by means of the Quasi-

Newton's algorithm (Grace, 1999) or Boltzman's annealing criteria (Li et al., 1997) to overcome the 

problems of chromosome stagnation and weak local exploration of a standard EA. Here, decimal-

coding scheme is used to reduce the chromosome length and to avoid the Hamming-cliff effect often 

encountered in a binary-coding based EA (Li et al., 1997). The multiple-decoding scheme (Tan, 

1997) with adaptive selection of searching range has been adopted in the paper, e.g., each parameter 

is encoded by 4 digits, 3 of which represent the number of quantified values of the parameters 

within a given range selection. The extra digit is used as a “control gene” to search for an 

appropriate range of that parameter, which benefits the EAs to have finer resolution and easy setting 

of the parameter range. The mutation is applied at a probability rate of 0.1 and due to the increased 

local fine-tuning activity in the hybrid EA (Li et al., 1997), the crossover rate is reduced and set as 
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0.5 in a similar way to evolution strategy techniques (Schwefel, 1995). Here a randomly positioned 

standard single-point crossover and tournament selection scheme (Li et al., 1997) are employed for 

rapid reproduction, where two random chromosomes compete once for survival. 

 

The same objective function of (2) was adopted in the evolutionary identification, and it took about 

2 hours for the hybrid EA to run for 100 generations with a population size of 100 on a 200 MHz 

Pentium Pro processor. The obtained clear-box model parameters are shown in the fourth column of 

Table 1. Fig. 7 shows the convergence trace of the best 10% of the identified parameters at each 

generation. The candidate values of a parameter within the best 10% models converged to a narrow 

range. It can be observed from Fig. 7 that the hybrid evolution managed to escape from a distinctive 

local optimum mainly caused by C2a2 and Q2 after 20 generations, which shows the effectiveness of 

the evolutionary based identification techniques. 

 

[Fig. 7 here] 

 

The resulting error residuals for the evolutionary identification are shown in Fig. 8, and their 

corresponding RMS errors at the two set of different operating levels are given in the fifth row of 

Table 2. Since the data used for the identification are at operating level of [v1, v2] = [2.5V, 2.5V], 

the EA identified clear-box model offers a better fitting accuracy than the measured and gradient-

optimised model at this operating point (c.f. Figs. 3(a), 5(a) and 8(a)). However, the validation also 

indicates that the EA identified clear-box model had failed to offer a similar accuracy if the 

operating point tested is different from that used in obtaining the model (c.f. Figs. 3(b), 5(b) and 

8(b)). Although the clear-box is a nonlinear model, validation shows that it is not suitable in 

representing the coupled twin-tank system, as it ignores the immeasurable non-dominant 

nonlinearities involved in the system. 
 

[Fig. 8 here] 

 

2.3  A Novel Type of Grey-Box Model 

The nonlinearities that have often been omitted in such a model identification exercise include non-

dominant contributions by fluid tension or friction, as well as simplification from distributed pipes 

to lumped orifices. Other inaccuracies may arise from manufacturing tolerance and measurement 

errors. The dependency of the ODE coefficients on operating points is, in fact, a state dependency 
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determined by the potential energies of 2g|h1-h2| and 2g|h2-H3|. As shown in Fig. 4, the two 

discharge coefficients of C1 and C2 at the steady-state are nonlinearly dependent on the potential 

energies of 2g|h1 - h2| and 2g|h2 - H3|, respectively. 

 

For engineering applications such as the coupled liquid-level system, it is often impossible to 

identify every detailed nonlinearity to obtain an accurate clear-box model. However, it is often 

desired to have a focused physical model structure of the system (Vandemolengraft et al., 1994). 

For this, a grey-box model which builds from a clear-box as the global structure and incorporates 

local black-boxes to model the operating-point sensitive coefficients that are unable to be modelled 

by a clear-box due to the neglected nonlinearities is proposed here. Unlike existing grey-box 

structure, such black-boxes are coupled with sensitive or immeasurable clear-box parameters and 

can be in the form of a power series polynomial, fuzzy logic, neural network or other types of basis 

function based generic function approximators. Since Padé approximation in the form of a 

regressive function is accurate and efficient, it is recommended here to play as the black-box role in 

the combined grey-box model. 

 

For (1), the two sensitive “coefficients” are now modelled by the black-box as 
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where cij and dij are the coefficients to be determined in the grey-box identification. 

 

2.4  Identification of the Grey-Box Model 

For the resultant grey-box model that combines (1), (3) and (4), the identification task is to find the 

coefficients H3, Q1, Q2, cij and dij such that the objective function of (2) is minimised. For 

simplicity, the Padé polynomial in (3) and (4) is limited to be second-order polynomial. Both 

Quasi-Newton's method and hybrid EA have been applied to identify the grey-box model at an 
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operating point [v1, v2] = [2.5V, 2.5V], and their respective recommended parameters are shown in 

Table 3. Since H3 in (1) cannot be linearly parameterised or separated from C2a2 and the black-

boxes need to be identified simultaneously within the nonlinear clear-box model structure, the 

Quasi-Newton's method has failed to search for an optimal grey-box model. The resulting error 

residuals for the Quasi-Newton's method are large as indicated in Fig. 9, and the corresponding 

RMS errors at the two set of different operating points are given in the sixth row of Table 2. Fig. 10 

shows the best local convergence trace of the Quasi-Newton's method. 

 

The resulting error residuals for the hybrid EA identified grey-box model are shown in Fig. 11, and 

its RMS values at different operating point are listed in the seventh row of Table 2. It can be seen 

that the hybrid EA identified grey-box model not only provides significantly improved 

identification quality but also robust to different operating levels. More importantly, the grey-box 

had also revealed the nonlinear trends of C1a1 and C2a2 as the potential energies changes as shown 

in Fig. 12 (c.f. Figs. 4 and 12). In the evolutionary identification process, candidate models in the 

evolution can combine physical and empirical models (Kemna and Mellichamp, 1995), and the 

evolution can start from empirical ones even if they are only clear-box models initially. 

 

[Table 3 here] 

[Fig. 9 here] 

[Fig. 10 here] 

[Fig. 11 here] 

[Fig. 12 here] 

 

 

 

 

3.  A MEASUREMENT SYSTEM MODELLING PROBLEM 

 

3.1  The Neutron Intensity Control System 

A reflectivity system based on collimated radiation is used in Bioengineering to determine the 

thickness and structural characteristics of thin films. A neutron beam hitting the film sample is 

reflected to the monitoring detector as shown in Fig. 13. To get a complete description of the 

reflectivity profile, the sample is rotated so that the incident beam strikes it at different angles. 
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Because the rotation will vary the intensity of the reflected beam, it is necessary to control the size 

of the neutron beam hitting the reflecting sample by means of two slits S1 and S2 while the sample is 

rotated. To analyse the thin film sample using its reflectivity, the intensity of the beam hitting the 

sample, Ad, must be known so that calibrations can be made. This is difficult for arbitrary 

combination sizes of S1 and S2 values. Therefore an inverse model needs to be generalised for 

automatic calibration of the reflectivity system. 

 

[Fig. 13 here] 

 

3.2  Clear-Box Model Representation and Identification 

To generalise the calibration model for arbitrary combination sizes of S1 and S2, the intensity 

responses to more than 60 pre-determined combination sizes of S1 and S2 are obtained as training 

data. To measure the data accurately within the sensitivity range of the detector while the slit sizes 

are changed, the manufacturer of the system recommends adding an attenuator after the Slit 2. 

However, the attenuation is suggested to be varied with the product of the two slit sizes by 5 

discretely decreasing values as shown in Table 4. 

 

[Table 4 here] 

 

By physical principles, the 'gain', I, from the input beam intensity, As, to the output beam intensity, 

Ad, is proportional to the product of the cascaded slit sizes. A clear-box model for the neutron 

intensity system may thus be established as, 

 

 21 SSkc
A
AI i

s

d ⋅⋅⋅==  (5) 

 

where c = 7.63 is a proportional factor of the gain depending upon the source intensity and the 

detector sensitivity. It is used to model any neglected factors that may not be measured accurately, 

such as the diffraction in a lumped manner; ki denotes the discretely decreasing attenuating factor as 

given in Table 4; S1 and S2 is the size of the cascaded slits 1 and 2, respectively. 

 

To identify the clear-box model in (5), the physical neutron intensity experiment was repeated three 

times to collect three sets of experimental I/O data with different combination sizes of slits S1 and 
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S2, as to average down the measurement errors. The task of the identification is thus to obtain an 

optimal set of ki such that the following quadratic objective function 

 

 J = ( )∑∑
=

−
3

1

2ˆ
m n

nn II  (6) 

 

is minimised. Where Î  represents the measured output data; m denotes the repeated number of 

experiments; n > 60 denotes the number of measurements made in one data set. 

 

Both the gradient-guided Quasi-Newton's method and evolutionary computing approach have been 

applied to identify the clear-box model in (5). The estimated attenuating factor ki is given in Table 

5. It can be seen that the two methods provide an equally good model with similar coefficient 

values, which is likely to be the global optimum. However, their corresponding RMS errors as 

shown in Table 5 are rather large (≈150). This is also reflected by the poor fitting accuracy between 

the data index of 40 and 60 as shown in Fig. 14, which suggests that the clear-box model of (5) 

cannot accurately represent the neutron intensity system. 

 

[Table 5 here] 

[Fig. 14 here] 

 

3.3  Grey-Box Model Representation and Identification 

The neglected diffraction effects and other unknown factors in the clear-box model may, however, 

be accounted by using a Padé approximation based black-box model as discussed in Section 2. 

Based on this, an accurate grey-box model may be established in order to include diffraction and 

other neglected and difficult-to-model effects. The clear-box structure of (5) is preserved and a 

general black-box structure is included in the formation of the grey-box model as given by 

 

 
22110

2211022110 ))((
ScScc

SbSbbSaSaakcI i ++
++++

⋅⋅=  (7) 

 

where ai, bi, and ci are the model coefficients to be determined. Note that the inclusion of the 

denominator may be unnecessary but could be useful for including some insignificant general 

nonlinearities. The same data set of Î  in Section 3.2 is used here to determine the grey-box 
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coefficients of the neutron intensity system, and the aim is to find the best set of ai, bi, ci, ki in (7) 

such that the amalgamated quadratic identification errors in (6) are minimal. 

 

Both the Quasi-Newton and evolutionary computing methods were used to identify an optimal 

grey-box model of (7). The resulting grey-box model coefficients and RMS errors are shown in 

Table 5. Again, both methods resulted in identical RMS errors, which is likely to be the global 

optimum. As shown in Table 5, the grey-box identification has multiple solutions or peaks as 

discovered by the hybrid EA. Since EA explores multiple points in the solution space in parallel, it 

has the unique capability of identifying multiple equal or unequal peaks, which is unmatched by 

conventional gradient-guided techniques (Michalewicz, 1994). The output response of the grey-box 

model with coefficient set of peak 1 in Table 5 is shown in Fig. 15. Obviously, the identified grey-

box model has performed a very good fitting to the neutron intensity system. Moreover, the grey-

box identification has produced an RMS error of 77.6, which is much smaller than the RMS error of 

150 in the clear-box model due to its neglected non-dominant characteristics. Note that the results 

also correctly yielded a relatively small value of 00 ba ⋅ , as S1 = S2 = 0 would result in a zero 

brightness count. 

 

[Fig. 15 here] 

 

3.4  Trade-Offs Among the Trajectory 

In Fig. 15, there are 5 different trajectories resulted from the different switching of attenuating 

factor ki. By providing a compromised model for the entire trajectory with the smallest 

amalgamated errors in (6), a grey-box model of (7) may be obtained. However, one coefficient set 

of ai, bi, ci, ki in (7) that is accurately fitted to one of the trajectory may not be the same for the 

others. To examine the relationships among the different trajectory, multi-objective optimisation is 

necessary such that a set of trade-off models could be obtained and visualised before final 

determination of a model based upon the on-hand situation. Unlike conventional gradient-guided 

optimisation techniques, evolutionary algorithm can be easily extended for multi-objective 

optimisation in view of its parallel-based evolution feature (Fonseca, 1995; Tan et al., 1999). A 

multi-objective evolutionary algorithm is capable to approximate the set of non-dominated 

solutions known as Pareto optimal set, where each objective component of any model along the 

Pareto front can only be improved by degrading at least one of its other objective components. 
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Here, fitting errors for each of the trajectory is regarded as one of the 5 objectives to be minimised 

in the multi-objective model identification. The MOEA toolbox developed by Tan et al., (2001) has 

been used here to find the set of Pareto optimal solutions, which is freely available for download at 

http://vlab.ee.nus.edu.sg/~kctan/moea.htm. The toolbox implements the multi-objective 

evolutionary algorithm (MOEA) proposed by Tan et al., (1999) with goal-sequence domination 

scheme that allows the incorporation of advanced hard/soft priority and constraint information on 

each of the objective components. Besides, the MOEA includes a dynamic sharing scheme that is 

simple and adaptively estimated according to the on-line population distribution without the need of 

any a-priori parameter setting. The toolbox is fully functional with graphical user interface (GUI) 

and is ready for immediate use without much knowledge on evolutionary computing. It also allows 

the generation of simulation results in various formats, such as text files or graphical displays for 

the purpose of on-line viewing and analysis. In addition, a file handling capability for saving all 

simulation results and model files in a Mat-file format for Matlab or text-file format for software 

packages like Microsoft Excel is also available. 

 

It took less than 0.5 hour for the evolution to run for 100 generations with a population size of 50 

on a 1 GHz Pentium III processor. All individuals obtained at the end of the evolution are consists 

of non-dominated models, indicating a substantial trade-offs among the 5 objectives. The trade-off 

graph of these non-dominated models is shown in Fig. 16, where each line representing a solution 

found by the MOEA. In the figure, trade-offs between adjacent objective results in the crossing of 

lines between them; whereas concurrent lines indicate that the objectives do not compete with each 

other. As can be seen, the lines are crossing between any two adjacent objectives showing the trade-

offs of fitting accuracy among any of the 5 trajectory. The capability of MOEA in finding the set of 

non-dominated models has thus provided a greater flexibility for control engineers in determining 

the most preferable model with the best fitting accuracy for a particular trajectory of the neutron 

intensity system depending on his/her preference or job-on-hand. 

 

[Fig. 16 here] 

 

3.5  Determination of Model Complexity 

Alternatively, the grey-box model structure of (7) may be represented by other Padé approximation 

or expanded to a more general higher order polynomial. Although complex model structure with 

higher orders may result in better fitting accuracy than a lower order model, sophisticated model 
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structure is often undesirable in system identification (Ljung, 1987; Söderström and Stoica, 1989). 

To determine an appropriate grey-box model structure with optimal model coefficients, the MOEA 

toolbox (Tan et al., 2001) was applied here to study the relationships of model complexity and 

fitting accuracy. For this, the grey-box model structure of (7) was expanded systematically from 

first-order to seventh-order as listed in Table 6. Note that the clear-box model of MC3 was also 

included in the expansion list to provide an easy comparison with other model complexities. 

 

The objective function of (6) for each of the grey-box model structure in Table 6 is regarded as an 

independent objective for the optimisation, which results in 7 objectives to be optimised 

concurrently in the evolution. To encourage the MOEA to consistently evolve optimal model 

parameters for all model structures, the best models for each of the 7 model structures at each 

generation were preserved and evolved into the next generation without any genetic operations, i.e., 

an elitism strategy was used in the evolution (Tan et al., 1999). Here, a model complexity index 

ranging from 1 to 7 was included for turning on/off any unnecessary model coefficients as 

appropriate. The algorithm has been run for 100 generations with a population size of 100, and the 

best models for each of the model structures at the end of the evolution are shown in Table 6. 

 

The graph of RMS errors versus the model complexity index is shown in Fig. 17. It can be seen that 

the RMS errors are decreased with the increased of model complexity index, which indicates the 

trade-offs between model complexity and fitting accuracy for the neutron intensity system. Further, 

it is shown that the RMS errors are decreased and saturated at the model complexity level of MC6. 

This suggests that further expansion of the polynomial beyond the structure of MC6 is unnecessary, 

and thus the grey-box model with structure MC6 may be regarded as a good representation for the 

neutron intensity system. It should be noted that the exact global optimum is unknown for the 

neutron intensity modelling problem based upon the practical real data. To verify the optimality of 

the nondominated front in Fig. 17, individual simulations for the different model complexity using 

the Quasi-Netwon’s method with different initial conditions have been performed. Results show 

that the individual optimum for each of the model complexity using the Quasi-Netwon’s method is 

very similar (within 1% variance) to the nondominated front as shown in Fig. 17. 

 

[Table 6 here] 

[Fig. 17 here] 
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4.  CONCLUSIONS 

 

A novel cost-effective evolutionary grey-box model identification technique has been presented in 

the paper. Such a grey-box model directly utilises the physical law based clear-box dominated 

global structure, with local black-boxes to include immeasurable and local nonlinearities of a 

practical system. The method offers an accurate, uncluttered and robust model with insightful 

representation of nonlinearities, which cannot be matched by conventional means. 

 

It has been shown that the grey-box model identification may be failed by conventional gradient-

guided model fitting methods, but can be easily established through global optimisation techniques 

by evolutionary computing. The evolution can start from empirical models, making the best use of 

existing knowledge on a practical system. In addition, the evolutionary technique is capable of 

accommodating multiple objectives to examine different trade-offs between the model complexity 

and fitting accuracy before final determination of a suitable grey-box model structure with 

optimised parameters. 

 

Two practical applications of a hydraulic nonlinear system and a neutron intensity control system 

have shown good feasibility and accuracy of the grey-box models. It is expected that the proposed 

multi-objective evolutionary grey-box identification technique could be easily applied to obtain 

accurate nonlinear models and better representations for many industrial plants. 
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Table 1  The measured and identified clear-box model at operating point [v1, v2] = [2.5V, 2.5V] 

Clear-Box Model Measured Values Quasi-Newton's Method Hybrid EA 

C1a1 (cm2) 0.21 0.11 0.38 

C2a2 (cm2) 0.24 0.02 0.20 

1Q  (cm3 s-1V-1) 7 0.81 7.6 

2Q  (cm3 s-1V-1) 7 0.79 5.1 

H3 (cm) 3 0.01 2.5 
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Table 2:  The RMS errors of the measured, clear-box and grey-box model 

  v1 = 2.5V+PRBS 

v2 = 1.5V+PRBS 

RMS Errors (in cm) Tank 1: e1 Tank 2: e2 Tank 1: e1 Tank 2: e2 

Measured 1.0470 1.5470 3.0427 1.5117 

Quasi-Newton's method 5.8429 4.7578 2.7853 1.8369 

 

Hybrid EA 0.4613 0.5518 2.2822 2.8844 

Quasi-Newton's method 1.6492 1.1226 4.4406 6.2240  

Hybrid EA 0.3402 0.3165 0.5898 0.3154 

 

Grey-box 

Mean Excitation Voltages v1 = v2 = 2.5V+PRBS

Clear-box 
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Table 3:  The identified grey-box model parameters 

Quasi-Newton's method Hybrid EA  

For C1a1 For C2a2 For C1a1 For C2a2 

ci0 0.6759 -0.1236 0.0373 0.4004 

ci1 0.4432 -0.0657 0.3789 0.0293 

ci2 0.8749 0.0053 0.2773 0.0152 

di1 -0.0131 -0.1928 0.2583 0.0811 

di2 -0.0962 0.1012 0.8148 0.0720 

H3 0.207 3.1 

Q1 0.1977 7.2 

Q2 0.2402 7.5 

 

Padé coefficients 
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Table 4:  Discretely decreasing attenuating factors 

S1·S2 [0, 0.25) [0.25, 2.0) [2.0, 9.0) [9.0, 44.0) [44.0, 207.0)

Attenuating Factors ki k1 ( > k2 ) k2 ( > k3 ) k3 ( > k4 ) k4 ( > k5 ) k5 ( > 0 ) 
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Table 5:  The identified model coefficients and RMS errors 

Clear-Box Model Grey-Box Model 

Hybrid EA 

 

   

Peak 1 Peak 2 Peak 3 Peak 4 Peak 5

k1 3748.1 3752.0 673.8 6473.6 4701.9 5886.6 7037.1 696.8

k2 794.25 795.02 128.5 1234.8 896.8 1122.8 1342.3 132.9

k3 151.42 151.64 24.9 239.5 174.0 217.8 260.4 25.8 

k4 28.25 28.18 5.2 50.0 36.3 45.5 54.4 5.4 

k5 4.52 4.46 0.97 9.3 6.8 8.5 10.1 1.0 

a0   -4.4 -0.7 -0.9 -0.6 -1.9 -4.4 

a1   85.5 10.3 14.3 12.2 44.9 84.9 

a2   -95.9 -4 -8.9 -15.8 -66.3 -95.0 

b0   -5.46 -1.7 -2.0 -2.0 -1.0 -5.3 

b1   104.1 42.2 46.1 34.6 14.8 102.3

b2   -114.5 -63.3 -65.3 -30.1 -7.4 -114.5

c0   1475.8 760.2 801.3 627.0 1232.6 1475.3

c1   14.77 0.7 2.8 3.0 9.1 14.9 

c2   96.6 70.6 68.1 50.7 90.5 96.3 

RMS error 149.5 150.1 77.6 

 

Parameters 
Quasi-NewtonQuasi-Newton Hybrid EA 
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Table 6:  Grey-box model coefficients and RMS errors for different model complexity 

 

Model 

Complexity 

MC1 =
1

1

d
n =

1
0a  

MC2 =
2

2

d
n = 

22111

22111

sbsbd
sasan

++
++  

 

 

 

21 ss ⋅  

MC4 =
4

4

d
n =

 

MC5 =
5

5

d
n =

2
25

2
144

2
25

2
144

sbsbd
sasan

++
++

MC6 =
6

6

d
n = 

2
2172

2
165

2
2172

2
165

ssbssbd
ssassan

++
++

MC7 =
7

7

d
n =

3
29

3
186

3
29

3
186

sbsbd
sasan

++
++

k1 12.7606 78.2311 3752 209.906 93.8832 140.587 95.5636 

k2 12.7822 18.4840 795.02 40.8092 18.2299 26.9040 18.2195 

k3 13.6154 5.7961 151.64 7.6896 3.4354 5.1562 3.4774 

k4 12.3477 1.7286 28.18 1.5704 0.7014 1.0570 0.7084 

k5 7.0490 0.2716 4.46 0.3108 0.1391 0.2085 0.1411 

a0 51.6519 -16.7617 0 0.1398 0.2701 1.0901 3.5421 

a1 0 30.4408 0 14.6919 -2.1112 -3.8297 -10.9563 

a2 0 10.8579 0 -47.1364 -0.1734 -0.8993 -3.1875 

a3 0 0 0 21.1747 5.1282 4.0541 7.2717 

a4 0 0 0 0.9023 13.7577 11.2346 19.8612 

a5 0 0 0 0 2.3344 1.8625 3.0467 

a6 0 0 0 0 0.9959 0.9860 4.9172 

a7 0 0 0 0 0 1.2611 2.0797 

a8 0 0 0 0 0 0 13.2110 

a9 0 0 0 0 0 0 1.3993 

b1 0 -1.4981 0 -0.0768 -0.5434 -1.1783 -0.3609 

b2 0 4.3819 0 0.2388 1.6361 3.8707 4.5648 

b3 0 0 0 0.0044 -0.3751 -0.8944 0.2657 

b4 0 0 0 0 0.0959 0.2900 -0.1739 

b5 0 0 0 0 0.2754 0.0339 0.6215 

b6 0 0 0 0 0 -0.0366 -0.6978 

b7 0 0 0 0 0 0.1122 0.1626 

b8 0 0 0 0 0 0 0.1698 

b9 0 0 0 0 0 0 1.2659 

RMS error 2201.3 590 150.4 63.0 62.7 61.3 61.3 

 

2132

2132

ssbd
ssan

+
+

MC3 =
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Pump Pump

Tank 1 Tank 2
h1

h2

Input Q2Input Q1

Pump Pump

H3

 
Fig. 1  A nonlinear coupled liquid-level system 
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Fig. 2  Noisy responses of the physical system to steps and PRBS exciting the relevant frequencies
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(a) v1(t) = 2.5 + PRBS( t-1000), v2(t) = 2.5 + PRBS( t-1000)

(b) v1(t) = 2.5 + PRBS( t-1000), v2(t) = 1.5 + PRBS( t-1000)

e1(t)

e2(t)

e1(t)

e2(t)

Time (sec)

Time (sec)

Time (sec)

Time (sec)

 
Fig. 3  Error residuals (in cm) of the measured clear-box model at different operating levels 

 



 27

0.65

0.7

0.75

0.8

1.6 6.2
h1-h2 (measured at steady-state) 

C
1 

(s
te

ad
y-

st
at

e) C1

 

0.4
0.6
0.8

1
1.2
1.4

0.5 17.5
h2-H3 (measured at steady-state)

C
2 

(s
te

ad
y-

st
at

e) C2

 
Fig. 4  Operating level dependent ‘coefficients’ in a nonlinear clear-box model  
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Fig. 5  Error residuals (in cm) of the clear-box model identified by Quasi-Newton’s method 
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Fig. 6  Local convergence of the Quasi-Newton’s method for clear-box model identification  
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Fig. 7  Convergence trace of the best 10% parameters in each generation 
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(a) v1(t) = 2.5 + PRBS( t-1000), v2(t) = 2.5 + PRBS( t-1000)

(b) v1(t) = 2.5 + PRBS( t-1000), v2(t) = 1.5 + PRBS( t-1000)
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Fig. 8  Error residuals of the evolutionary identified clear-box model at different operating levels 
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Fig. 9  Error residuals (in cm) of the grey-box model identified by Quasi-Newton’s method 
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Fig. 10  Local convergence of the Quasi-Newton’s method for grey-box identification 
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(a) v1(t) = 2.5 + PRBS( t-1000), v2(t) = 2.5 + PRBS( t-1000)

(b) v1(t) = 2.5 + PRBS( t-1000), v2(t) = 1.5 + PRBS( t-1000)

e1(t)

e2(t)

e1(t)

e2(t)

Time
(sec)

Time (sec)

Time (sec)

Time (sec)

 
Fig. 11  Error residuals (in cm) of the hybrid EA identified grey-box model 
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Fig. 12  Modelling the varying ‘coefficients’ of the clear structure in the grey-box by black-boxes 
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Fig. 13  A thin film reflectivity detecting system 



 37

0 10 20 30 40 50 60
0

5000

10000

15000

Data indexData Index  

Fig. 14  Fitting acurracy of the clear-box model for data set 1; I {….} and Î {⎯} 
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Fig. 15  Fitting acurracy of the grey-box model for data set 1; I {….} and Î {⎯} 
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Fig. 16  Trade-offs among the different trajectory 
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Fig. 17  Trade-offs between the model complexity index and RMS errors 
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