
E. David et al. (Eds.): AMEC/TADA 2009, LNBIP 59, pp. 88–101, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Demand-Driven Approach for a Multi-Agent System in
Supply Chain Management

Yevgeniya Kovalchuk and Maria Fasli

School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park,
Colchester, CO4 3SQ, United Kingdom
{yvkova,mfasli}@essex.ac.uk

Abstract. This paper presents the architecture of a multi-agent decision support
system for Supply Chain Management (SCM) which has been designed to
compete in the TAC SCM game. The behaviour of the system is demand-driven
and the agents plan, predict, and react dynamically to changes in the market.
The main strength of the system lies in the ability of the Demand agent to
predict customer winning bid prices – the highest prices the agent can offer
customers and still obtain their orders. This paper investigates the effect of the
ability to predict customer order prices on the overall performance of the
system. Four strategies are proposed and compared for predicting such prices.
The experimental results reveal which strategies are better and show that there
is a correlation between the accuracy of the models’ predictions and the overall
system performance: the more accurate the prediction of customer order prices,
the higher the profit.

Keywords: Multi-Agent Systems, Trading Agents, Supply Chain Management,
Prediction, Neural Networks.

1 Introduction

Supply Chain Management (SCM) involves a number of activities from negotiating
with suppliers to competing for customer orders and scheduling the manufacturing
process and delivery of goods. The activities are different in their nature: they work
with different data, have different tasks and constraints. At the same time, they are
interrelated to ensure the achievement of the ultimate goal of maximizing the
enterprise’s profit. This makes the chain very difficult to manage: being successful in
one area of the supply chain does not necessarily guarantee the improvement of the
overall performance. Designing an effective decision-support system (DSS) for SCM
has become crucial in recent years, especially nowadays, when enterprises can no
longer rely on static strategies for operating their business. With the advent of e-
Commerce and in a global economy, SCM systems have to be able to deal with
uncertainty and volatility of modern markets.

This paper introduces an intelligent DSS for SCM. A multi-agent approach is
applied for designing the system in order to deal with the complexity of the domain
and to provide flexibility regarding the system architecture. This approach allows

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/9318072?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 A Demand-Driven Approach for a Multi-Agent System in Supply Chain Management 89

separating different tasks within the SCM and exploring them both independently and
in relation to each other. The system can be broken down into separate building
blocks, each concentrating on a particular part of the supply chain. By replacing one
building block with another and by combining them in different ways, various
versions of the system can be created. In this way, the influence of changes in
behaviour in each link of the supply chain can be systematically studied. In addition,
the concept of agents is used to facilitate industrial application of the system: by
assigning an autonomous agent to a separate entity of the supply chain, the tasks can
be distributed geographically as well as implemented using different platforms.

The architecture of the proposed system includes agents for each link of the supply
chain: supply, inventory, production, selling, and delivery. While following their own
goals, the agents work in cooperation in order to achieve the common ultimate goal –
to maximize the overall profit. The Demand agent takes the leading role in the
system: the performance of the other agents is organised in such a way so as to ensure
execution of customer orders on time. The main task for the Demand agent is to
provide the most profitable customer order bundle. It does this by predicting the
highest prices it can offer customers for each of their requests for quotes (RFQs) and
still win their orders. Different strategies for predicting customer order prices are
considered in this work. The first strategy is to model competitors’ behaviour, predict
their offer prices and bid just below them. The second approach is to predict customer
order prices based on the time-series of these prices. The third strategy is to predict
the prices based on details of the customers’ RFQs, market details and bidding
history. Finally, the last strategy is to predict probabilities of the winning price to be
in particular intervals and bid according to the most probable price. The Neural
Networks learning technique is used in the predictors.

The system has been tested in the TAC SCM simulated environment [9], which is
now probably the best vehicle for testing SCM agents. It encapsulates many of the
tradeoffs that could be found in real SCM environments: time-constraints, network
latency, unpredictable opponents, etc. The generalized problem competitors are faced
with can be formulated as follows: “given a market situation with specific rules, how
does one act to buy, sell, and produce goods to maximize expected profit?” [10].

Many research teams have dedicated their work to exploring various issues that
arise within the TAC SCM environment. They offer different system architectures
and explore various methods for dealing with uncertainty and the volatility of the
environment. This paper contributes to the area by offering a new multi-agent
demand-driven architecture for SCM systems. Moreover, the paper introduces a
number of algorithms for predicting customer order prices, which have not been
explored in the TAC community yet. We compare the algorithms in terms of their
accuracy of prediction and influence on the overall system performance.

The rest of this paper is organized as follows. An overview of related work is
provided first. The description of the behaviour of the internal agents in the system
follows. Section 4 introduces the approaches for predicting customer order prices. The
experiment settings and results are presented next. The paper closes with the
conclusions and a discussion of future work.

90 Y. Kovalchuk and M. Fasli

2 Related Work

The idea of applying a multi-agent approach to SCM systems has become very
popular in recent years. We refer to [11] as one of the first attempts to organize the
supply chain as a network of intelligent agents. The latest collection of papers on the
applications of agent technology to SCM can be found in [7]. The book also discusses
advantages and disadvantages of the agent-based approach for designing industrial
software. The multi-agent system developed in [24] helps to reduce the total cost and
bullwhip effect across the supply chain.

A significant contribution to the area has been made by the research teams that
design trading agents to compete in the TAC SCM game. A survey of design
approaches of these agents can be found in [14]. The survey is organized by the
primary research agenda considered by the agents’ developers: constraint
optimization, machine learning, management of dynamic supply chains, scalable
autonomous agents, architecture, empirical game theory, dealing with uncertainty,
decision coordination, agent coordination mechanisms, predicted sales volume, future
production schedule, inventory management, central strategy module, separate supply
and demand models, and internal markets. Our paper contributes to this research by
presenting an original multi-agent demand-driven architecture for the SCM system. In
addition, the paper proposes four different strategies for sellers to follow when setting
customer offer prices. The algorithms developed according to these strategies differ
from the ones proposed by other TAC SCM participants. The methods used by other
teams include fuzzy reasoning inference mechanisms [13], additive regression with
decision stumps [21], linear regression [2], linear cumulative density function (CDF)
[3], reverse CDF [16], continuous knapsack problem [1], dynamic pricing [5], and k-
nearest neighbors [8, 17]. According to [8], the M5 algorithm outperforms multiple
linear regression, neural networks, and support vector machines (SVM) when
predicting customer wining bid prices. The M5 algorithm along with BoosTexter [25]
have also been supported in [22], where the authors compared these algorithms with
neural networks, decision stumps (single-level decision trees) boosted with additive
regression, J48 decision trees, SVM, naïve Bayes, and k-nearest neighbours.
According to [15], all the aforementioned methods do not take into consideration
market conditions that are not directly observable. The authors use a Markov
correction-prediction process and an exponential smoother to identify the market
regimes and a Gaussian mixture model to determine the probability of receiving a
customer order in different regimes for different prices.

The Neural Networks (NN) learning technique has not found much support within
the TAC SCM community [22, 8]. However, it might be due to the fact that
researchers have been using standard setup in their learning algorithms as
implemented in tools such as WEKA (http://www.cs.waikato.ac.nz/ml/
weka/) [28], Matlab (http://www.mathworks.com/), and Netlab (http://www.
ncrg.aston.ac.uk/netlab/). We developed our own NN predicting tool and
experimented with its settings, as we found strong evidence of successful application
of NNs for solving forecasting tasks in the domains of finance and business other than
TAC SCM. An overview of successful NN models applied to marketing, retail,
banking and finance, insurance, telecommunication, and operations management is

 A Demand-Driven Approach for a Multi-Agent System in Supply Chain Management 91

provided in [26]. Empirical evidence of applicability of NN to the prediction of
foreign exchange rates is reported in [29]. The authors of [6] discuss application of
classical regression models, NN, fuzzy logic, and fractal theory for forecasting time
series of dollar/peso exchange rate, U.S./Mexico exchange rates and prices of onions
and tomatoes in the U.S. market. They conclude that the regression models show the
poorest performance, and also that NN outperform fuzzy logic when forecasting in the
short-term, while fuzzy logic outperforms NN when forecasting in the long term. In
[12], the researchers propose several methods for predicting online auction prices
using regression, decision trees (C5.0), and NNs. Their binary classifier based on NNs
demonstrated the highest prediction accuracy (96%).

3 System Architecture

The system has a multi-agent architecture. Each agent within the system is
responsible for a particular aspect of the supply chain. Although each agent focuses
on specific tasks within its problem domain trying to achieve its own goals and
having its own constraints, the agents do not act in isolation. They communicate with
each other in order to achieve the main goal of generating profit. The system includes
the following agents: Manager agent, Demand agent, Supply agent, Inventory agent,
Production agent, and Delivery agent. The agents are described below in turn and
Figure 1 illustrates the system architecture using UML notation [4].

The Manager agent is responsible for the communication with the TAC server as
well as managing all other agents. It undertakes the following tasks: (1) Imports game
settings, competitors’ identities, Bill of Materials, and Component Catalog;
(2)Updates inventory, factory and bank status; (3) Gets supplier offers, customer
RFQs and orders; (4) Sends customer offers and supplier RFQs and orders; (5) Sends
production and delivery schedules; (6) Gets market and price reports; (7) Keeps a
record of RFQs, offers, orders, schedules, reports, and other information shared by all
other internal agents; (8) Coordinates the agents’ performance. While managing the
whole SCM system, the agent aims to maximize the overall profit.

The Demand agent deals with selling personal computers (PCs) to customers. Each
day it gets customer RFQs and orders from the Manager. In addition to these, the
agent generates RFQs that might arrive in the future. Due to the limited production
capacity, future demand has to be taken into consideration when scheduling
production: future orders might bring more profit than the current ones. It has been
shown in [21] that predicting future demand level (number of RFQs in a Bundle)
doesn’t significantly improve the system’s performance comparing to setting this
level equal to the current level. According to this, we assume that the future RFQ
bundle contains the same number of RFQs that arrived on the current day. The value
of each parameter of a future RFQ is chosen uniformly in the interval between the
minimum and maximum allowed values for this parameter according to the game
specification. For every new and future RFQ, the agent decides on the bidding price
to offer to the customer. This paper introduces several approaches for setting offer
prices which are discussed in the next section. Having the bidding prices, this agent
estimates the profit of both new and future RFQs based on the latest prices the Supply

92 Y. Kovalchuk and M. Fasli

agent paid for the components. It then sorts the RFQs in profit descending order and
asks the Production agent to project production for 10 days in the future (i.e. create
production drafts) using the details of the new and future RFQs as well as orders.
Considering only the new RFQs allocated to production drafts, the Demand agent
generates customer offers and returns the RFQ bundle to the Manager to be sent to
customers. The goal of this agent is to maximize revenue from the customers’ orders.

The remit of the Supply agent is the procurement of low cost components on time
from suppliers. Considering the component demand, current level of component
usage, and available stocks, the agent generates its supplier RFQs. The agent uses the
strategy of sending RFQs with different due dates. Long-term RFQs to arrive in 20
days are sent according to the current level of component usage to benefit from lower
prices. Short-term RFQs to arrive in 3-6 days are then sent to meet current production
needs. The agent tracks the suppliers’ deliveries and prices, and sends its RFQs to the
suppliers with the lowest level of current prices and delays. The agent sets its RFQ
prices based on the prices paid recently, current prices quoted by the suppliers for
probe RFQs (RFQs with zero quantity), and prices provided in the latest market
report. When the RFQ details are decided, the agent generates an RFQ bundle. After
getting offers from suppliers, the Supply agent generates its order Bundle. It accepts
all complete offers and earliest partial offers. The RFQ Bundle along with the Order
Bundle are passed to the Manager who sends them to the corresponding suppliers.

The Inventory agent manages the arrival of components from suppliers and
assembled PCs from production, as well as releases components for production and
PCs for delivery to customers. It registers the component and PC demands of the
Production and Delivery agents respectively, and tries not to let the inventories go
below a certain threshold in order to satisfy these demands. To minimize inventory
storage costs, the agent dynamically adjusts the threshold levels for each component.
To avoid situations where the Production agent schedules the production of PCs that
cannot perhaps be produced due to lack of components, the Inventory agent also
manages the critical levels of each component below which the PC production cannot
be scheduled.

The Production agent is responsible for scheduling current production and
projecting production in the future. Having the details on customer RFQs and orders
from the Demand agent and component inventory stocks from the Inventory agent,
the agent schedules its production for 10 days in the future. Having a limited
production capacity, it tries to maximize the production utility (the potential profit
that the scheduled production might generate). For every day in the future, the agent
schedules the current and late orders, depending on their due date, profit and
availability of components, and then it allocates current and future RFQs, again
considering their due dates, profit and availability of components.

The remit of the Delivery agent is to deliver PCs to customers according to their
orders. To prevent penalties for late deliveries, it schedules the delivery of active
orders as soon as the requested PCs are released from production. It sorts current
active orders by their due date and allocates the delivery of these orders into the
current delivery schedule until the corresponding PCs are available in store.

The UML sequence diagram Figure 2 summarizes the interaction between the
agents.

 A Demand-Driven Approach for a Multi-Agent System in Supply Chain Management 93

Generate future demand

Predict customer order prices

Generate delivery schedule

Project production
Manage late productions

Generate production schedule

Decide on qty, price and future date for
supplier RFQs

Generate supplier RFQs

Process supplier offers

Generate supplier orders

Goal: max revenue
{decision time}

Goal: min component cost
{number of RFQs per supplier}

Goal: max production utility
{production capacity}
{component stock}

Get supplier offers, customer RFQs and orders

Send and register customer offers, supplier
RFQs and orders

Goal: max profit
{execution time}

Tune component stock thresholds

Import game parameters, BOM and component
catalog, competitors' identitiesCoordinate agents' performance

Update inventory, factory and bank status

Get market reports

Send production and delivery schedules

Generate customer offers

Process new customers RFQs

Process new customer orders

Track supplier prices and deliveries

Manager

Demand
Agent

Supply
Agent

Production
Agent

Delivery
Agent

Inventory
AgentTune component critical levels Manage component demand

Manage component and product arrival and
consumption

Goal: min component holding cost

Manage late customer orders

Goal: Minimize penalties for late deliveries
{PC stock}

Fig. 1. The SCM system architecture

:Manager agent :Demand agent :Production agent :Inventory agent :Supply agent :Delivery agentTAC SCM server

setSupplierRFQs(), setSupplierOrders(offers)

generateFutureDemand(rfqs.size())

predictOrderPrices(rfqs,futureRfqs,reports)

scheduleDemand(orders,rfqs,futureRfqs)

getComponentInventory()

componentInventory

projectProduction(activeOrders,rfqs,futureRfqs)scheduledNewRfqs

componentDemand

customerOfferBundle

productionSchedule

generateProductionSchedule()

scheduleProduction()

customerOfferBundle setCustomerOffers

productionShedule

generateDeliverySchedule(activeOrders)

deliveryScheduledeliverySchedule

processSupplierOffers(offers)supplierOrderBundlesupplierOrderBundle

getComponentDemand()

compDemand

getProductInventory()

prodInventory

supplierRfqBundle

scheduleDelivery(activeOrders,prodInventory)

generateSupplierRfqs(compDemand,supPrices,supDelays)supplierRfqBundle

setCustomerOffers(rfqs,orders,reports)

processNewInfo (rfqs,offers,orders,reports)

Fig. 2. Agent interactions in the SCM system

94 Y. Kovalchuk and M. Fasli

4 Strategies for Predicting Customer Order Prices

This paper investigates approaches for setting customer offer prices and how various
algorithms for predicting winning bid prices influence the overall system’s
performance.

In the TAC SCM game, there are six agents who act as product manufacturers
competing for supplier components and customer orders for finished PCs. Customers
send RFQs to all agents for the 16 types of PCs that can be manufactured on a daily
basis. Agents make offers and according to the game rules, customers accept the
lowest offers proposed among all agents. Information on competitors’ offer prices is
not available to TAC agents. However, apart from RFQs details, the lowest and the
highest order prices for each PC type from the previous day are available.

Four different strategies to determine which prices to offer customers are proposed.
All of them are based on customer order price predictions. The first strategy is to
predict competitors’ offer prices and bid just below them. The second one is to predict
the lowest and the highest customer order prices for each product based on the time-
series of the prices and bid in between the predicted values. According to the third
approach, order prices are predicted based on details of the customer RFQs, market
details and bidding history. Finally, the last approach is to predict probabilities of an
order price to be in particular intervals and bid according to the most probable price.

The Neural Networks learning technique (NN) is used to make predictions. Genetic
Programming (GP) has been also applied for modelling competitors’ behaviour and
making time-series predictions [19]; however, we found that NN models outperform
GP models in terms of accuracy of prediction, time execution, and complexity of
implementation. Thus, only NN models are considered. NN architectures of the
models differ to meet the requirement of each algorithm. The sigmoid activation
function and Back-propagation training algorithm [20] are used in all NNs.

4.1 Modelling the Competitors’ Behaviour

According to the game specification, customers choose the lowest price among the
ones offered by all sellers. Prediction of the competitors’ prices for an RFQ allows to
identify the lowest price which will be offered to a customer. Using GP, the trees have
been evolved for each competitor, to represent which attributes a competitor is using
when setting its offer prices [19]. According to these trees, an individual NN has been
constructed for each competitor: only the attributes represented in the competitor’s
tree have been included as inputs to its NN. The full set of inputs consists of the
following parameters: PC type, current date, lead time (due date minus current date),
quantity, reserve price, penalty, the lowest and highest reported market price, and
current demand level. Inputs are normalized to be in the interval [0.1; 0.9], using the
minimum and maximum allowed values for each input according to the game
specification (formula 5).

4.2 Time-Series Prediction

In the TAC SCM game, the lowest and highest customer order prices for each product
type are available from the previous day. In the context of a highly competitive

 A Demand-Driven Approach for a Multi-Agent System in Supply Chain Management 95

market the difference between these prices tends to be very small. It has been
experimentally established that setting offer prices in between these prices is a
competitive strategy. According to this, the NN learning technique is applied to
perform time-series forecasts of the lowest and highest customer order prices for the
next day. Customer offer prices are then set in between the predicted values.
Algorithms within this group vary in the following: data transformation methods; data
normalisation methods; number of historical data points included in time-series. The
following data transformation and normalisation methods are applied over NN inputs:

Differential transformation

1−−= ttd xxx (1)

Rational transformation

)ln(
1−

=
t

t
r x

x
x (2)

Statistical transformation

,
σ

xx
x t

s

−=

()∑∑
==

−
−

==
N

t
t

N

t
t xx

N
x

N
x

1

22

1 1
1

,
1 σ

(3)

Linear varied normalization

)(
minmax

min

xx

xx
x ilv

i −
−= (4)

Linear fixed normalization

1.08.0)(
minmax

min +⋅
−

−=
xx

xx
x ilf

i (5)

Non-linear normalization

ix
nl
i e

x −+
=

1

1
 (6)

where xt and xt-1 are consecutive data values in a series; xmin and xmax are the minimum

and maximum allowed values for the corresponding data type; x is the mean of the

series values and 2σ is their variance.
The models take price values from six or eleven preceding days and predict the

winning price for one day in the future.
On average, the most accurate model appears to be the one with the differential

transformation method, linear varied normalisation method, and eleven data points in

96 Y. Kovalchuk and M. Fasli

input time-series. However, during the course of a game, accuracy of the models’
predictions varies. A meta-model has been applied over the models to find the final
predicted price according to the models’ performance in runtime. The heuristics of the
meta-model is based on the idea of reinforcement learning. The final predicted price
is set to the weighted sum of the prices predicted by all time-series models. Weights
are summed up to 1 and tuned on-line during the course of a game: the most currently
accurate model is rewarded by increasing its weight, while the worst model is
punished by decreasing its weight. The optimal step for tuning the weights is set
experimentally to 0.01. Experiments demonstrated that inclusion of the meta-model
doesn’t improve the accuracy of prediction compared to when only the best
performing on average model is applied. According to this, only this best time-series
model (TB, “Time-series the Best”) is tested in the experiments that follow.

4.3 Order Price Prediction Based on Bidding History

According to this approach (referred further as WP, “Winning Price”), customer order
prices are predicted for each RFQ using RFQ details, current market information, and
results from previous auctions. Using this information, the NN predicts the expected
value of the order price. The inputs for the model include: product type, its quantity,
current date, due date, penalty, customer reserve prices, the lowest and the highest
customer order prices for the last three days, and the current demand level (ratio of
the number of RFQs received from the customers to the maximum possible number
according to the game specification). Records in the training set map these attributes
to the actual order price. The number of hidden units is set to 5 and the learning rate is
tuned during the training process according to the dynamics of the prediction error.

4.4 Order Price Probability Prediction

A set of ensembles of NNs, one set for each product type, is designed to predict order
price probabilities. The possible price range is split into small intervals. Each NN in
the ensemble is assigned to one such interval and predicts the probability of the order
price to be in this interval. The final price is set to a random value from the interval
with the greatest probability (the random element makes prices hard to predict by our
opponents). The strategy for setting the upper limit of the possible price range varies.
According to one algorithm (PF, “Probability Fixed”), the upper price limit is fixed
according to the highest price observed in all previously played games. In another
algorithm (PV, “Probability Varied”), the upper limit is set for each RFQ individually
according to the customer reserve price (the highest price the customer is willing to
pay). The inputs for both algorithms include RFQ details and current market
information, such as: type of product requested, its quantity, current date, due date,
penalty, customer reserve prices, the lowest and the highest customer order prices for
the last three days, and the order level as calculated for the previous day (ratio of the
number of orders received from customers to the number of offers sent to them).
Along with these attributes, an offered price and the corresponding binary code
showing if the offer with this price resulted in a customer order is recorded during the
games for each RFQ. These records are used for training the models. The input units
are normalised according to formula (5).

 A Demand-Driven Approach for a Multi-Agent System in Supply Chain Management 97

5 Experimental Setup

Having a number of learning algorithms for predicting customer order prices, the task
is to compare their predictive abilities and to identify the strategy which is better for
the Demand agent to follow so as to ensure a better overall system performance.

When learning from data, we are interested in which data are perceived from the
environment, how these data are preprocessed, and in what way the output is used for
making decisions. Our time-series predictors use price values only. The other
algorithms require more information from the market environment. The input set is
the same for these algorithms with the only exception that probability predictors use
order level instead of demand level. The algorithms differ in NN settings, methods for
preparing inputs, and in the way the outputs are used to set customer offer prices.

First, a number of experiments have been run in the TAC SCM simulated
environment to indentify the most accurate predictive model. In order to do this, all
the models have been tested simultaneously and the prices predicted by them were
recorded for further analysis. To provide a fair evaluation benchmark, the customer
offer prices have been set using a random element according to the following formula:

Offer price = (phighest + plowest)/2 + a1 –a2 (7)

where plowest and phighest are the lowest and highest customer order prices reported on
the previous day; a1 and a2 are coefficients set to random values within the interval [0;
20] (the upper limit of the interval is set according to the average gap between the
lowest and highest customer order prices observed in the games).

The second set of experiments has been run to explore how predictive models
affect the overall system’s performance. The experiments have the aim to identify
which model helps to get the best score and if there is a correlation between the
accuracy of the models’ predictions and the score achieved in the game. The models
have been tested in pairs: two versions of the system with different predictors have
been playing in the same game against each other and four other competitors. All
other settings in both versions of the system have been kept the same.

The following TAC SCM agents have been chosen as competitors: TacTex2007
[21], PhantAgent2006 [27], Maxon2006, SouthamptonSCM 2006 [13], and
CrocodileAgent2005 [23] (the agents’ binary code is publicly available at
http://www.sics.se/tac/). For the second set of experiments, the second version of the
system replaced the TacTex2007 agent. For both experiments, 30 games have been
played to collect the data for training the models and then another 40 games – to
estimate their performance.

6 Results

For the first set of experiments, where the accuracy of models predictions has been
estimated, the models are compared in terms of their average relative error (ARE):

∑

∑

=

=

−
= N

i

actual
i

N

i

pred
i

actual
i

x
N

xxabs
N

ARE

1

1

1

)(
1

(8)

98 Y. Kovalchuk and M. Fasli

Table 1. Summary of models’ performance

Model Name Abbreviation Section ARE (st. dev.) Rank
Competitor Individual CI 4.1 0.0437 (0.017) 3
Time-series the Best TB 4.2 0.0320 (0.016) 1
Winning Price WP 4.3 0.0353 (0.016) 2
Probability Fixed PF 4.4 0.1080 (0.034) -
Probability Varied PV 4.4 0.1080 (0.028) 4

Table 2. Models’ pair-comparison

% of wining games % of winning bids Experiment
Model 1 Model 2 Model 1 Model 2

CI vs. TB 0 100 62,7 50,2
CI vs. WP 0 100 52,0 45,4
CI vs. PV 100 0 62,9 58,3
TB vs. PV 100 0 58,3 56,8
WP vs. PV 100 0 61,6 56,1
TB vs. WP 60 40 53,8 52,7

where xactual and xpred are actual and predicted customer order prices observed in a
case; N is the number of cases recorded in all games.

The detailed discussion of the results from the first set of experiments can be found
in [18]. In summary, the algorithms cope with the dynamics of the environment very
well: accuracy of their predictions remains the same throughout a game considering
that some opponents also learn. According to Table 1, the time-series model gives the
highest accuracy of prediction (ARE=3,2%) followed by WP model which achieves
ARE=3,5%. The strategy of applying competitors’ price predictors gives ARE=4,4%,
while both probability price predictors provide the lowest accuracy with ARE=10,8%.

In the second set of experiments, the effect of applying the predictive models on
the overall system performance has been estimated. Two different versions of the
system have played against each other and the percentage of winning games as well
as the number of orders won compared to the number of offers sent have been
estimated for each of them. According to the results (Table 2), the systems with the
TB and WP models perform similarly good, outperforming other versions of the
system which use the CI or PV predictive models (as PF and PV models predict with
the same accuracy and their architectures are similar, only the PV model has been
tested in the second set of experiments). The system with the PV models achieves the
lowest score. The ranking order for the models is provided in Table 1.

Combining the results from both sets of experiments the conclusion can be drawn
that there is a strong correlation between the models’ accuracy of prediction and total
score achieved in games. At the same time, the algorithms leading to the better overall
performance do not necessarily provide higher percentage of winning orders (the ratio
of the number of offers sent, to the number of orders received). For example, the
strategy of predicting competitors’ prices (CI), which comes third, provides the
highest percentage of winning bids comparing to all other strategies. Therefore, a
more extensive analysis of the algorithms’ performance is required. In particular, the

 A Demand-Driven Approach for a Multi-Agent System in Supply Chain Management 99

ratio of prices predicted lower than the actual prices to those of higher predicted, as
well as the relation between the predicted prices and the ones set by competitors have
been investigated, however due to the limited space are not included to this paper.

7 Conclusions and Future Work

SCM is a very complex and dynamic process. It includes a number activities, which,
on the one hand, have their particular individual tasks to perform and goals to
achieve, but on the other hand, they are connected and interdependent. Being
successful in one area of the supply chain does not necessarily guarantee the
improvement of the overall performance. Thus, there is the need for a mechanism to
separate different tasks and explore them both independently and in relation to each
other. We implemented such a mechanism in our multi-agent decision support system
for SCM. The multi-agent approach allows to change the behaviour of each agent at a
time and identify how the changes affect the overall system’s performance.

The proposed system consists of six agents: one for each link in the supply chain
(supply, inventory, production, demand and delivery) and also the Manager agent that
coordinates and integrates the performance of all other internal agents, as well as
provides interaction with the external environment. The agents plan, predict and
collaborate in order to achieve the goal of maximizing profit. The Demand agent
plays a central role in the system. Its main goal is to provide the most profitable
customer order bundles taking into consideration changes in the customer demand,
limited production capacity, limited inventory stocks, and unstable supply. The agent
predicts customer order prices. Different methods for performing forecasts and
approaches for setting customer offer prices are investigated and their influence on
the overall system performance is studied. The experiments in the TAC SCM
environment demonstrated that time-series forecasts and price predictions based on
RFQ details and bidding history provide the best performance. The systems with these
algorithms achieve similar scores when competing against each other. The system
with the competitor price predictors comes next, and the approach of predicting price
probabilities gives the lowest result. The same ranking order is observed when
comparing the accuracy of the models’ predictions. Thus, there is a strong correlation
between the accuracy of price predictions and the total profit made: the higher the
accuracy, the better the overall system performance.

Although the multi-agent approach has been applied by other researchers for
designing their SCM systems, this paper offers an original demand-driven system
architecture and scenario of its behaviour. The major contribution of our work is the
development and comparison of the algorithms for predicting customer order prices
that have not yet been applied in this domain. The algorithms demonstrated good
performance in the TAC SCM game. What is more important, the models are
designed in such a way that they are not associated with the game rules and thus can
be used in other dynamic and competitive environments. Applying the algorithms in
other domains is one of the next steps in our research. We also want to test our most
accurate algorithms against the algorithms developed by other researchers. As 42
different predictive algorithms have been developed, it has been hard at this stage to
compare them all against existing methods proposed in the literature. Another task for

100 Y. Kovalchuk and M. Fasli

the future work is to explore possibilities of applying other learning techniques to
perform forecasts of customer order prices according to the strategies proposed in this
paper. We also want to investigate how the behaviour of internal agents in the system
can be further developed in order to improve the overall system’s performance.

References

1. Benish, M., Andrews, J., Sadeh, N.: Pricing for Customers with Probabilistic Valuations as
a Continuous Knapsack Problem. In: 8th International Conference on Electronic
Commerce, Fredericton, Canada, pp. 38–46 (2006)

2. Benish, M., Andrews, J., Sardinha, A., Sadeh, N.: CMieux: Adaptive Strategies for
Competitive Supply Chain Trading. ACM SIGecom Exchanges 6(1), 1–10 (2006)

3. Benisch, M., Greenwald, A., Grypari, I., Lederman, R., Naroditskiy, V., Tschantz, M.:
Botticelli: A supply chain management agent. In: 3rd International Conference on
Autonomous Agents and Multi-Agent Systems, New York, NY, pp. 1174–1181 (2004)

4. Booch, G., Jacobson, I., Rumbaugh, J.: OMG Unified Modeling Language Specification,
Version 1.3., 1st edn. (2000)

5. Burke, D.A., Brown, K.N., Tarim, S.A., Hnich, B.: Learning market prices in real-time
supply chain management. Computers and Operations Research 35(11), 3465–3478 (2008)

6. Castillo, O., Melin, P.: Hybrid intelligent systems for time series prediction using neural
networks, fuzzy logic, and fractal theory. IEEE Transactions on Neural Networks 13(6),
1395–1408 (2002)

7. Chaib-draa, B., Muller, J.: Multiagent based Supply Chain Management. Springer,
New York (2006)

8. Chatzidimitriou, K.C., Symeonidis, A.L., Kontogounis, I., Mitkas, P.A.: Agent Mertacor:
A robust design for dealing with uncertainty and variation in SCM environments. Expert
Systems with Applications 35(3), 591–603 (2008)

9. Collins, J., Arunachalam, R., Sadeh, N., Eriksson, J., Finne, N., Janson, S.: The Supply
Chain Management Game for the 2007 Trading Agent Competition. Technical Report
CMU-ISRI-07-100, Carnegie Mellon University (2006)

10. Dong, R., Tai, T., Yeung, W., Parkes, D.C.: HarTAC – the Harvard TAC SCM ’03 Agent.
In: Trading Agent Design and Analysis Workshop, TADA-03, New York, NY, USA, pp.
1–8 (2004)

11. Fox, M.S., Chionglo, J.F., Barbuceanu, M.: The integrated supply chain management.
Internal report of the Enterprise Integration Laboratory, Department of Industrial
Engineering, University of Toronto, Ontario, Canada (1993)

12. Ghani, R.: Price prediction and insurance for online auctions. In: 11th ACM SIGKDD
International Conference on Knowledge Discovery in Data Mining, pp. 411–418. ACM
Press, NY (2005)

13. He, M., Rogers, A., Luo, X., Jennings, N.R.: Designing a Successful Trading Agent for
Supply Chain Management. In: 5th International Joint Conference on Autonomous Agents
and Multi-Agent Systems, Hakodate, Japan, pp. 1159–1166 (2006)

14. Ketter, W., Collins, J., Gini, M.: A Survey of Agent Designs for TAC SCM. In: Workshop
for Trading Agent Design and Analysis, Chicago, USA (2008)

15. Ketter, W., Collins, J., Gini, M., Gupta, A., Schrater, P.: Identifying and Forecasting
Economic Regimes in TAC SCM. In: 19th International Joint Conference on Artificial
Intelligence, Edinburgh, Scotland, UK, pp. 53–60 (2005)

 A Demand-Driven Approach for a Multi-Agent System in Supply Chain Management 101

16. Ketter, W., Kryznaya, E., Damer, S., McMillen, C., Agovic, A., Collins, J., Gini, M.:
MinneTAC sales strategies for supply chain TAC. In: 3rd International Conference on
Autonomous Agents and Multi-Agent Systems, New York, NY, pp. 1372–1373 (2004)

17. Kiekintveld, C., Miller, J., Jordan, P., Wellman, M.: Forecasting market prices in a supply
chain game. In: 6th International Conference on Autonomous Agents and Multi-Agent
Systems, Honolulu, Hawaii, USA, pp. 1318–1325 (2007)

18. Kovalchuk, Y.: Seller’s Strategies for Predicting Winning Bid Prices in Online Auctions.
In: International Conference on Intelligent Agents, Web Technologies and Internet
Commerce, Vienna, Austria, pp. 1–6 (2008)

19. Kovalchuk, Y., Fasli, M.: Adaptive Strategies for Predicting Bidding Prices in Supply
Chain Management. In: 10th International Conference on Electronic Commerce
(ICEC’08), Innsbruck, Austria, pp. 19–22 (2008)

20. Mitchell, T.M.: Machine Learning, International edn. MIT Press and The McGraw-Hill
Companies, Inc. (1997)

21. Pardoe, D., Stone, P.: Adapting in agent-based markets: A study from TAC SCM. In: 6th
International Joint Conference on Autonomous Agents and Multi-Agent Systems,
Honolulu, Hawaii, USA, pp. 677–679 (2007)

22. Pardoe, D., Stone, P.: Bidding for Customer Orders in TAC SCM: A Learning Approach.
In: 3rd International Joint Conference on Autonomous Agents and Multi-Agent Systems,
New York, NY, pp. 52–58 (2004)

23. Petric, A., Podobnik, V., Jezic, G.: The CrocodileAgent: Designing a robust trading agent
for volatile e-market conditions. In: Nguyen, N.T., Grzech, A., Howlett, R.J., Jain, L.C.
(eds.) KES-AMSTA 2007. LNCS (LNAI), vol. 4496, pp. 597–606. Springer, Heidelberg
(2007)

24. Saberi, S., Makatsoris, C.: Multi agent system for negotiation in Supply Chain
Management. In: 6th International Conference on Manufacturing Research, Brunel
University, UK, pp. 311–317 (2008)

25. Schapire, R.E., Singer, Y.: BoosTexter: A boosting-based system for text categorization.
Machine Learning 39(2/3), 135–168 (2000)

26. Smith, K.A., Gupta, J.N.D.: Neural networks in business: techniques and applications for
the operations researcher. Computers and Operations Research 27(11-12), 1023–1044
(2000)

27. Stan, M., Stan, B., Florea, A.M.: A Dynamic Strategy Agent for Supply Chain
Management. In: 8th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing, Washington, DC, USA, pp. 227–232. IEEE Computer Society, Los
Alamitos (2006)

28. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques
with Java Implementations. Morgan Kaufmann, San Mateo (1999)

29. Yao, J.T., Tan, C.L.: A Case Study on Using Neural Networks to Perform Technical
Forecasting of Forex. Neurocomputing 34(1-4), 79–98 (2000)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

