111 research outputs found

    Coulomb parameters and photoemission for the molecular metal TTF-TCNQ

    Full text link
    We employ density-functional theory to calculate realistic parameters for an extended Hubbard model of the molecular metal TTF-TCNQ. Considering both intra- and intermolecular screening in the crystal, we find significant longer-range Coulomb interactions along the molecular stacks, as well as inter-stack coupling. We show that the long-range Coulomb term of the extended Hubbard model leads to a broadening of the spectral density, likely resolving the problems with the interpretation of photoemission experiments using a simple Hubbard model only.Comment: 4 pages, 2 figure

    Methods for high-dimensonal analysis of cells dissociated from cyropreserved synovial tissue

    Get PDF
    © 2018 The Author(s). Background: Detailed molecular analyses of cells from rheumatoid arthritis (RA) synovium hold promise in identifying cellular phenotypes that drive tissue pathology and joint damage. The Accelerating Medicines Partnership RA/SLE Network aims to deconstruct autoimmune pathology by examining cells within target tissues through multiple high-dimensional assays. Robust standardized protocols need to be developed before cellular phenotypes at a single cell level can be effectively compared across patient samples. Methods: Multiple clinical sites collected cryopreserved synovial tissue fragments from arthroplasty and synovial biopsy in a 10% DMSO solution. Mechanical and enzymatic dissociation parameters were optimized for viable cell extraction and surface protein preservation for cell sorting and mass cytometry, as well as for reproducibility in RNA sequencing (RNA-seq). Cryopreserved synovial samples were collectively analyzed at a central processing site by a custom-designed and validated 35-marker mass cytometry panel. In parallel, each sample was flow sorted into fibroblast, T-cell, B-cell, and macrophage suspensions for bulk population RNA-seq and plate-based single-cell CEL-Seq2 RNA-seq. Results: Upon dissociation, cryopreserved synovial tissue fragments yielded a high frequency of viable cells, comparable to samples undergoing immediate processing. Optimization of synovial tissue dissociation across six clinical collection sites with ~ 30 arthroplasty and ~ 20 biopsy samples yielded a consensus digestion protocol using 100 μg/ml of Liberase™ TL enzyme preparation. This protocol yielded immune and stromal cell lineages with preserved surface markers and minimized variability across replicate RNA-seq transcriptomes. Mass cytometry analysis of cells from cryopreserved synovium distinguished diverse fibroblast phenotypes, distinct populations of memory B cells and antibody-secreting cells, and multiple CD4+ and CD8+ T-cell activation states. Bulk RNA-seq of sorted cell populations demonstrated robust separation of synovial lymphocytes, fibroblasts, and macrophages. Single-cell RNA-seq produced transcriptomes of over 1000 genes/cell, including transcripts encoding characteristic lineage markers identified. Conclusions: We have established a robust protocol to acquire viable cells from cryopreserved synovial tissue with intact transcriptomes and cell surface phenotypes. A centralized pipeline to generate multiple high-dimensional analyses of synovial tissue samples collected across a collaborative network was developed. Integrated analysis of such datasets from large patient cohorts may help define molecular heterogeneity within RA pathology and identify new therapeutic targets and biomarkers

    Legislative Participation in the EU: An analysis of questions, speeches, motions and declarations in the 7th European Parliament

    Get PDF
    Which legislative activities in the European Parliament are ‘pluralistic’ – i.e. undertaken by all Members of the European Parliament, irrespective of legislative and electoral status? What type of parliamentary activity – if any – is dominated by party leaderships or vote-seekers in the European Union? This study will advance our knowledge of legislative politics in the EU by determining whether its legislature conforms to expectations from the legislative behaviour literature. This study compares the participation patterns in the EP7 (2009–2014) parliamentary questions, speeches, motions and written declarations via multilevel negative binomial regression. It makes use of a dataset on activity levels and demographics of 842 individual Members of the European Parliament serving between 2009 and 2014. The findings highlight that highly procedurally constrained activities, such as speeches and oral questions, are dominated by frontbenchers and vote-seekers, while procedurally ‘freer’ activities – written questions in particular – are very representative of the population of Members of the European Parliament. The analysis finds that there are both ‘pluralistic’ and vote-seeking activities in the ‘second order’ EU legislature, and that participation patterns broadly conform to patterns found in other established representative democracies

    Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV

    Get PDF
    We report the first measurement of charged particle elliptic flow in Pb-Pb collisions at 2.76 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement is performed in the central pseudorapidity region (|η\eta|<0.8) and transverse momentum range 0.2< pTp_{\rm T}< 5.0 GeV/cc. The elliptic flow signal v2_2, measured using the 4-particle correlation method, averaged over transverse momentum and pseudorapidity is 0.087 ±\pm 0.002 (stat) ±\pm 0.004 (syst) in the 40-50% centrality class. The differential elliptic flow v2(pT)_2(p_{\rm T}) reaches a maximum of 0.2 near pTp_{\rm T} = 3 GeV/cc. Compared to RHIC Au-Au collisions at 200 GeV, the elliptic flow increases by about 30%. Some hydrodynamic model predictions which include viscous corrections are in agreement with the observed increase.Comment: 10 pages, 4 captioned figures, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/389

    Wavelet Neural Network Methodology for Ground Resistance Forecasting

    Get PDF
    Motivated by the need of engineers for a flexible and reliable tool for estimating and predicting grounding systems behavior, this study developed a model that accurately describes and forecasts the dynamics of ground resistance variation. It is well-known that grounding systems are a key of high importance for the safe operation of electrical facilities, substations, transmission lines and, generally, electric power systems. Yet, in most cases, during the design stage, electrical engineers and researchers have limited information regarding the terrain’s soil resistivity variation. Moreover, the periodic measurement of ground resistance is hindered very often by the residence and building infrastructure. The model, developed in the present study, consists of a nonlinear, nonparametric Wavelet Neural Network (WNN), trained in field measurements of soil resistivity and rainfall height, observed the past four years. The proposed framework is tested in five different grounding systems with different ground enhancing compounds, so that can be used for the evaluation of the behavior of several ground enhancing compounds, frequently used in grounding practice. The research results indicate that the WNN can constitute an accurate model for ground resistance forecasting and can be a useful tool in the disposal of electrical engineers. Therefore, this paper introduces the wavelet analysis in the field of ground resistance evaluation and endeavors to take advantage of the benefits of computational intelligence

    Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at 2.76 TeV

    Get PDF
    We report on the first measurement of the triangular v3v_3, quadrangular v4v_4, and pentagonal v5v_5 charged particle flow in Pb-Pb collisions at 2.76 TeV measured with the ALICE detector at the CERN Large Hadron Collider. We show that the triangular flow can be described in terms of the initial spatial anisotropy and its fluctuations, which provides strong constraints on its origin. In the most central events, where the elliptic flow v2v_2 and v3v_3 have similar magnitude, a double peaked structure in the two-particle azimuthal correlations is observed, which is often interpreted as a Mach cone response to fast partons. We show that this structure can be naturally explained from the measured anisotropic flow Fourier coefficients.Comment: 10 pages, 4 figures, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/387

    The ALICE Transition Radiation Detector: Construction, operation, and performance

    Get PDF
    The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection. (c) 2017 CERN for the benefit of the Authors. Published by Elsevier B.V

    Physics of the HL-LHC, and Perspectives at the HE-LHC

    Get PDF
    corecore