118 research outputs found

    Josephson oscillation of a superfluid Fermi gas

    Full text link
    Using the complete numerical solution of a time-dependent three-dimensional mean-field model we study the Josephson oscillation of a superfluid Fermi gas (SFG) at zero temperature formed in a combined axially-symmetric harmonic plus one-dimensional periodic optical-lattice (OL) potentials after displacing the harmonic trap along the axial OL axis. We study the dependence of Josephson frequency on the strength of the OL potential. The Josephson frequency decreases with increasing strength as found in the experiment of Cataliotti et al. [Science 293 (2001) 843] for a Bose-Einstein condensate and of the experiment of Pezze et al. [Phys. Rev. Lett. 93 (2004) 120401] for an ideal Fermi gas. We demonstrate a breakdown of Josephson oscillation in the SFG for a large displacement of the harmonic trap. These features of Josephson oscillation of a SFG can be tested experimentally.Comment: 7 pages, 10 figure

    Physics of the HL-LHC, and Perspectives at the HE-LHC

    Get PDF

    GRB 221009A observations with LST-1 at VHE gamma rays

    Get PDF
    On October 9th, 2022, the brightest gamma-ray burst (GRB) since the first GRB observation in the late sixties was detected by the Fermi-GBM and Swift-BAT telescopes (GRB 221009A). The outstanding characteristics of this GRB triggered extensive follow-up observations of the source across all wavebands, including at very-high-energy (VHE) gamma rays with the Large-Sized Telescope prototype (LST-1) of the upcoming Cherenkov Telescope Array Observatory (CTAO). In this contribution, we present the analysis and results of the LST-1 observation campaign in October 2022, focusing on the data taken under nominal observing conditions and above 200 GeV. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

    Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at 2.76 TeV

    Get PDF
    We report on the first measurement of the triangular v3v_3, quadrangular v4v_4, and pentagonal v5v_5 charged particle flow in Pb-Pb collisions at 2.76 TeV measured with the ALICE detector at the CERN Large Hadron Collider. We show that the triangular flow can be described in terms of the initial spatial anisotropy and its fluctuations, which provides strong constraints on its origin. In the most central events, where the elliptic flow v2v_2 and v3v_3 have similar magnitude, a double peaked structure in the two-particle azimuthal correlations is observed, which is often interpreted as a Mach cone response to fast partons. We show that this structure can be naturally explained from the measured anisotropic flow Fourier coefficients.Comment: 10 pages, 4 figures, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/387

    Advanced Virgo Plus. Future perspectives

    Get PDF
    While completing the commissioning phase to prepare the Virgo interferometer for the next joint Observation Run (O4), the Virgo collaboration is also finalizing the design of the next upgrades to the detector to be employed in the following Observation Run (O5). The major upgrade will concern decreasing the thermal noise limit, which will imply using very large test masses and increased laser beam size. But this will not be the only upgrade to be implemented in the break between the O4 and O5 observation runs to increase the Virgo detector strain sensitivity. The paper will cover the challenges linked to this upgrade and implications on the detector’s reach and observational potential, reflecting the talk given at 12th Cosmic Ray International Seminar - CRIS 2022 held in September 2022 in Napoli

    Urinary, Circulating, and Tissue Biomonitoring Studies Indicate Widespread Exposure to Bisphenol A

    Full text link

    WHO global research priorities for antimicrobial resistance in human health

    Get PDF
    The WHO research agenda for antimicrobial resistance (AMR) in human health has identified 40 research priorities to be addressed by the year 2030. These priorities focus on bacterial and fungal pathogens of crucial importance in addressing AMR, including drug-resistant pathogens causing tuberculosis. These research priorities encompass the entire people-centred journey, covering prevention, diagnosis, and treatment of antimicrobial-resistant infections, in addition to addressing the overarching knowledge gaps in AMR epidemiology, burden and drivers, policies and regulations, and awareness and education. The research priorities were identified through a multistage process, starting with a comprehensive scoping review of knowledge gaps, with expert inputs gathered through a survey and open call. The priority setting involved a rigorous modified Child Health and Nutrition Research Initiative approach, ensuring global representation and applicability of the findings. The ultimate goal of this research agenda is to encourage research and investment in the generation of evidence to better understand AMR dynamics and facilitate policy translation for reducing the burden and consequences of AMR

    Multigrid methods: fundamental algorithms, model problem analysis and applications

    No full text
    Proceedings of the conference on mulitgrid methods held at Koeln-Porz, 23 - 27 Nov 1981 published in: Lecture notes in mathematics, v. 960 by Springer, Berlin (Germany, F.R.)SIGLEDEGerman
    corecore