15 research outputs found

    Seismic geomorphology of cretaceous megaslides offshore Namibia (Orange Basin):Insights into segmentation and degradation of gravity-driven linked systems

    Get PDF
    This study applies modern seismic geomorphology techniques to deep-water collapse features in the Orange Basin (Namibian margin, Southwest Africa) in order to provide unprecedented insights into the segmentation and degradation processes of gravity-driven linked systems. The seismic analysis was carried out using a high-quality, depth-migrated 3D volume that images the Upper Cretaceous post-rift succession of the basin, where two buried collapse features with strongly contrasting seismic expression are observed. The lower Megaslide Complex is a typical margin-scale, extensional-contractional gravity-driven linked system that deformed at least 2 km of post-rift section. The complex is laterally segmented into scoop-shaped megaslides up to 20 km wide that extend downdip for distances in excess of 30 km. The megaslides comprise extensional headwall fault systems with associated 3D rollover structures and thrust imbricates at their toes. Lateral segmentation occurs along sidewall fault systems which, in the proximal part of the megaslides, exhibit oblique extensional motion and define horst structures up to 6 km wide between individual megaslides. In the toe areas, reverse slip along these same sidewall faults, creates lateral ramps with hanging wall thrust-related folds up to 2 km wide. Headwall rollover anticlines, sidewall horsts and ramp anticlines may represent novel traps for hydrocarbon exploration on the Namibian margin.The Megaslide Complex is unconformably overlain by few hundreds of metres of highly contorted strata which define an upper Slump Complex. Combined seismic attributes and detailed seismic facies analysis allowed mapping of headscarps, thrust imbrications and longitudinal shear zones within the Slump Complex that indicate a dominantly downslope movement of a number of coalesced collapse systems. Spatial and stratal relationships between these shallow failures and the underlying megaslides suggest that the Slump Complex was likely triggered by the development of topography created by the activation of the main structural elements of the lower Megaslide Complex. This study reveals that gravity-driven linked systems undergo lateral segmentation during their evolution, and that their upper section can become unstable, favouring the initiation of a number of shallow failures that produce widespread degradation of the underlying megaslide structures. Gravity-driven linked systems along other margins are likely to share similar processes of segmentation and degradation, implying that the megaslide-related, hydrocarbon trapping structures discovered in the Namibian margin may be common elsewhere, making megaslides an attractive element of deep-water exploration along other gravitationally unstable margins

    Hydrocarbon generation and migration from Barremian – Aptian source rocks, Northern Orange Basin, offshore Western South Africa: A 3d numerical modelling study

    Get PDF
    A 3D numerical modelling workflow was applied to the Barremian—Aptian source rock interval in a shelfal to lower slope area of the northern Orange Basin, offshore western South Africa. The main objective was to investigate the timing of hydrocarbon generation and migration. Hydrocarbon migration has previously been investigated in the south of the basin by relating gas escape features with structural elements as seen on seismic sections, but migration pathways are still poorly understood. The modelling study was based on data from three exploration wells (AO-1, AE-1 and AF-1) together with 42 2D seismic sections totalling 3537 km in length, and a 3D seismic cube covering an area of 750 sq. km. Modelled formation temperatures increase from north to south in the study area and were consistent with downhole temperatures at well locations. However, there is variation between measured and modelled values of vitrinite reflectance (VR), especially in the Turonian and Cenomanian intervals. The measured VR is lower than the modelled VR within the Turonian section in the north of the study area, suggesting that erosion has affected the thermal maturity of the sediments. However, in the Cenomanian interval, the measured VR is higher than the modelled VR. Uplift, increased erosion in the hinterland and sediment transport to the coastal areas resulted in Cenomanian progradation of the Orange Basin fill

    Post break-up tectonic inversion across the southwestern cape of South Africa: new insights from apatite and zircon fission track thermochronometry

    Get PDF
    The south-west African margin is regarded as an example of a passive continental margin formed by continental rifting following a phase of lithospheric extension and thinning. Recent attention focused on this margin has included theoretical modelling studies of rift processes, plate kinematic studies of the opening geometry and timing, and empirical studies focused on documenting the crustal structure and offshore sedimentary record. Here, we examine the onshore geomorphic and tectonic response to rifting and breakup, with a specific focus on the SW Cape of South Africa. We present 75 new apatite and 8 new zircon fission track analyses from outcrop samples and onshore borehole profiles along the western margin of South Africa. The data are used to derive robust thermal histories that record two discrete phases of accelerated erosional cooling during the Early Cretaceous (150-130 Ma) and Late Cretaceous (100-80 Ma), respectively. Both periods of enhanced erosion are regional in extent, involved km-scale erosion, and extend well inland of the current escarpment zone, albeit with spatially variable intensity and style. The Late Cretaceous episode is also expressed more locally by tectonic reactivation and inversion of major faults causing km-scale differential displacement and erosion. The new AFT data do not exclude the possibility of modest surface uplift occurring during the Cenozoic, but they restrict the depth of regional Cenozoic erosion on the western margin to less than c. 1 km. The inferred pattern and chronology of erosion onshore is consistent with the key features and sediment accumulation patterns within the offshore Orange and Bredasdorp basins. It is suggested that the Late Cretaceous event was triggered by a combination of regional dynamic uplift augmented along the western margin and in the SW Cape by local tectonic forces arising from dextral displacement of the Falkland Plateau along the Falkland-Agulhas Fracture Zone

    The chronology and tectonic style of landscape evolution along the elevated Atlantic continental margin of South Africa resolved by joint apatite fission track and (U-Th-Sm)/He thermochronology

    Full text link

    Tectonic subsidence history and thermal evolution of the Orange Basin

    No full text
    The Orange Basin offshore southwest Africa appears to represent a classical example of continental rifting and break up associated with large-scale, transient volcanism. The presence of lower crustal bodies of high seismic velocities indicates that large volumes of igneous crust formed as a consequence of lithospheric extension. We present results of a combined approach using subsidence analysis and basin history inversion models. Our results show that a classical uniform stretching model does not account for the observed tectonic subsidence. Moreover, we find that the thermal and subsidence implications of underplating need to be considered. Another departure from the uniform stretching model is renewed sub-crustal thinning and linked to that uplift in the Cenozoic that is necessary to reproduce the observed phases of erosion and the present-day depth of the basin. The dimension of these events has been examined and quantified in terms of tectonic uplift and sub-crustal thinning. Based on these forward models we predict the heat flow evolution not only for the available real wells but also for virtual wells over the entire study area. Finally, the hydrocarbon potential and the temperature evolution is presented and shown in combination with inferred maturation of the sediments for depth intervals which comprise potential source rocks. © 2009 Elsevier Ltd. All rights reserved
    corecore