81 research outputs found

    Robot manipulator self-identification for surrounding obstacle detection

    Get PDF
    Obstacle detection plays an important role for robot collision avoidance and motion planning. This paper focuses on the study of the collision prediction of a dual-arm robot based on a 3D point cloud. Firstly, a self-identification method is presented based on the over-segmentation approach and the forward kinematic model of the robot. Secondly, a simplified 3D model of the robot is generated using the segmented point cloud. Finally, a collision prediction algorithm is proposed to estimate the collision parameters in real-time. Experimental studies using the KinectⓇ sensor and the BaxterⓇ robot have been performed to demonstrate the performance of the proposed algorithm

    Observation of room-temperature ferroelectricity in elemental Te nanowires

    Full text link
    Ferroelectrics are essential in low-dimensional memory devices for multi-bit storage and high-density integration. A polar structure is a necessary premise for ferroelectricity, mainly existing in compounds. However, it is usually rare in elemental materials, causing a lack of spontaneous electric polarization. Here, we report an unexpected room-temperature ferroelectricity in few-chain Te nanowires. Out-of-plane ferroelectric loops and domain reversal are observed by piezoresponse force microscopy. Through density functional theory, we attribute the ferroelectricity to the ion-displacement created by the interlayer interaction between lone pair electrons. Ferroelectric polarization can induce a strong field effect on the transport along the Te chain, supporting a self-gated field-effect transistor. It enables a nonvolatile memory with high in-plane mobility, zero supply voltage, multilevel resistive states, and a high on/off ratio. Our work provides new opportunities for elemental ferroelectrics with polar structures and paves a way towards applications such as low-power dissipation electronics and computing-in-memory devices

    Toward a generic analytical framework for sustainable nitrogen management: application for China

    Get PDF
    Managing reactive nitrogen (Nr) to achieve a sustainable balance between production of food, feed and fiber, and environmental protection is a grand challenge in the context of an increasingly affluent society. Here, we propose a novel framework for national nitrogen (N) assessments enabling a more consistent comparison of the uses, losses and impacts of Nr between countries, and improvement of Nr management for sustainable development at national and regional scales. This framework includes four key components: national scale N budgets, validation of N fluxes, cost-benefit analysis and Nr management strategies. We identify four critical factors for Nr management to achieve the sustainable development goals: N use efficiency (NUE), Nr recycling ratio (e.g., ratio of livestock excretion applied to cropland), human dietary patterns and food waste ratio. This framework was partly adopted from the European Nitrogen Assessment and now is successfully applied to China, where it contributed to trigger policy interventions toward improvements for future sustainable use of Nr. We demonstrate how other countries can also benefit from the application our framework, in order to include sustainable Nr management under future challenges of growing population, hence contributing to the achievement of some key sustainable development goals (SDGs)

    Progress on improving Agricultural Nitrogen use efficiency: UK-China viortual joint centers on Nitrogen Agronomy

    Get PDF
    Two virtual joint centers for nitrogen agronomy were established between the UK and China to facilitate collaborative research aimed at improving nitrogen use efficiency (NUE) in agricultural production systems and reducing losses of reactive N to the environment. Major focus areas were improving fertilizer NUE, use of livestock manures, soil health, and policy development and knowledge exchange. Improvements to fertilizer NUE included attention to application rate in the context of yield potential and economic considerations and the potential of improved practices including enhanced efficiency fertilizers, plastic film mulching and cropping design. Improved utilization of livestock manures requires knowledge of the available nutrient content, appropriate manure processing technologies and integrated nutrient management practices. Soil carbon, acidification and biodiversity were considered as important aspects of soil health. Both centers identified a range of potential actions that could be taken to improve N management, and the research conducted has highlighted the importance of developing a systemslevel approach to assessing improvement in the overall efficiency of N management and avoiding unintended secondary effects from individual interventions. Within this context, the management of fertilizer emissions and livestock manure at the farm and regional scales appear to be particularly important targets for mitigation

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF
    corecore