115 research outputs found

    A burst chasing x-ray polarimeter

    Get PDF
    Gamma-ray bursts are one of the most powerful explosions in the universe and have been detected out to distances of almost 13 billion light years. The exact origin of these energetic explosions is still unknown but the resulting huge release of energy is thought to create a highly relativistic jet of material and a power-law distribution of electrons. There are several theories describing the origin of the prompt GRB emission that currently cannot be distinguished. Measurements of the linear polarization would provide unique and important constraints on the mechanisms thought to drive these powerful explosions. We present the design of a sensitive, and extremely versatile gamma-ray burst polarimeter. The instrument is a photoelectric polarimeter based on a time-projection chamber. The photoelectric time-projection technique combines high sensitivity with broad band-pass and is potentially the most powerful method between 2 and 100 keV where the photoelectric effect is the dominant interaction process. We present measurements of polarized and unpolarized X-rays obtained with a prototype detector and describe the two mission concepts; the Gamma-Ray Burst Polarimeter (GRBP) for the U.S. Naval Academy satellite MidSTAR-2, and the Low Energy Polarimeter (LEP) onboard POET, a broadband polarimetry concept for a small explorer mission

    Integration of multiple platforms for the analysis of multifluorescent marking technology applied to pediatric GBM and dipg

    Get PDF
    The intratumor heterogeneity represents one of the most difficult challenges for the development of effective therapies to treat pediatric glioblastoma (pGBM) and diffuse intrinsic pontine glioma (DIPG). These brain tumors are composed of heterogeneous cell subpopulations that coexist and cooperate to build a functional network responsible for their aggressive phenotype. Understanding the cellular and molecular mechanisms sustaining such network will be crucial for the identification of new therapeutic strategies. To study more in-depth these mechanisms, we sought to apply the Multifluorescent Marking Technology. We generated multifluorescent pGBM and DIPG bulk cell lines randomly expressing six different fluorescent proteins and from which we derived stable optical barcoded single cell-derived clones. In this study, we focused on the application of the Multifluorescent Marking Technology in 2D and 3D in vitro/ex vivo culture systems. We discuss how we integrated different multimodal fluorescence analysis platforms, identifying their strengths and limitations, to establish the tools that will enable further studies on the intratumor heterogeneity and interclonal interactions in pGBM and DIPG

    The properties of proton-proton interactions between 100 and 1000 GeV from a cosmic-ray experiment

    Full text link
    Proton-proton interactions above 100 GeV have been studied in an experiment using cosmic-ray protons interacting in a liquid hydrogen target. From several hundred hydrogen interactions, it has been learned that: (a) the total inelastic pp cross section is not changing significantly with energy above 30 GeV; (b) the multiplicity distributions of charged prongs agree with a Poisson distribution in charged-particle pairs; (c) the average charged prong multiplicity increases as 1 n s; (d) the angular distribution of charged particles agrees with a c.m. momentum distribution of charged particles that varies as exp exp [-8 pT2-8x2] d3p/E (where X = pL/po) and a nucleon distribution that varies as 10x exp [-3 pT2] d3p/E for 0.05 < x < 0.85. Further properties of the angular distributions, characteristics of the ionization calorimeter, the cross section in iron, and other features of the data are reported.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34084/1/0000363.pd

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Bone Marrow Transplantation Restores Follicular Maturation and Steroid Hormones Production in a Mouse Model for Primary Ovarian Failure

    Get PDF
    Recent studies suggest that bone marrow stem cells (BMSCs) are promising grafts to treat a variety of diseases, including reproductive dysfunction. Primary ovarian failure is characterized by amenorrhea and infertility in a normal karyotype female, with an elevated serum level of follicle-stimulating hormone (FSH) and a decrease level of estrogen caused by a mutation in FSH receptor (FSHR) gene. Currently, there is no effective treatment for this condition. The phenotype of FSHR (−/−) mouse, FORKO (follitropin receptor knockout), is a suitable model to study ovarian failure in humans. Female FORKO mice have elevated FSH, decreased estrogen levels, are sterile because of the absence of folliculogenesis, and display thin uteri and small nonfunctional ovaries. In this study, we determined the effects of BMSC transplantation on reproductive physiology in this animal model. Twenty four hours post BMSC transplantation, treated animals showed detectable estroidogeneic changes in daily vaginal smear. Significant increase in total body weight and reproductive organs was observed in treated animals. Hemotoxylin and eosin (H&E) evaluation of the ovaries demonstrated significant increase in both the maturation and the total number of the follicles in treated animals. The FSH dropped to 40–50% and estrogen increased 4–5.5 times in the serum of treated animals compared to controls. The FSHR mRNA was detected in the ovaries of treated animals. Our results show that intravenously injected BMSCs were able to reach the ovaries of FORKO mice, differentiate and express FHSR gene, make FSHR responsive to FSH, resume estrogen hormone production, and restore folliculogenesis

    Discovery of 4,6-disubstituted pyrimidines as potent inhibitors of the heat shock factor 1 (HSF1) stress pathway and CDK9.

    Get PDF
    Heat shock factor 1 (HSF1) is a transcription factor that plays key roles in cancer, including providing a mechanism for cell survival under proteotoxic stress. Therefore, inhibition of the HSF1-stress pathway represents an exciting new opportunity in cancer treatment. We employed an unbiased phenotypic screen to discover inhibitors of the HSF1-stress pathway. Using this approach we identified an initial hit (1) based on a 4,6-pyrimidine scaffold (2.00 μM). Optimisation of cellular SAR led to an inhibitor with improved potency (25, 15 nM) in the HSF1 phenotypic assay. The 4,6-pyrimidine 25 was also shown to have high potency against the CDK9 enzyme (3 nM)

    Discovery of a Chemical Probe Bisamide (CCT251236): An Orally Bioavailable Efficacious Pirin Ligand from a Heat Shock Transcription Factor 1 (HSF1) Phenotypic Screen.

    Get PDF
    Phenotypic screens, which focus on measuring and quantifying discrete cellular changes rather than affinity for individual recombinant proteins, have recently attracted renewed interest as an efficient strategy for drug discovery. In this article, we describe the discovery of a new chemical probe, bisamide (CCT251236), identified using an unbiased phenotypic screen to detect inhibitors of the HSF1 stress pathway. The chemical probe is orally bioavailable and displays efficacy in a human ovarian carcinoma xenograft model. By developing cell-based SAR and using chemical proteomics, we identified pirin as a high affinity molecular target, which was confirmed by SPR and crystallography
    corecore