10 research outputs found

    Acute central nervous system toxicity during treatment of pediatric acute lymphoblastic leukemia : phenotypes, risk factors and genotypes

    Get PDF
    Publisher Copyright: © 2022 Ferrata Storti Foundation Published under a CC BY-NC license.Central nervous system (CNS) toxicity is common at diagnosis and during treatment of pediatric acute lymphoblastic leukemia (ALL). We studied CNS toxicity in 1, 464 children aged 1.0-17.9 years, diagnosed with ALL and treated according to the Nordic Society of Pediatric Hematology and Oncology ALL2008 protocol. Genome-wide association studies, and a candidate single-nucleotide polymorphism (SNP; n=19) study were performed in 1, 166 patients. Findings were validated in an independent Australian cohort of children with ALL (n=797) in whom two phenotypes were evaluated: diverse CNS toxicities (n=103) and methotrexate-related CNS toxicity (n=48). In total, 135/1, 464 (9.2%) patients experienced CNS toxicity for a cumulative incidence of 8.7% (95% confidence interval: 7.31-10.20) at 12 months from diagnosis. Patients aged ≥10 years had a higher risk of CNS toxicity than had younger patients (16.3% vs. 7.4%; P<0.001). The most common CNS toxicities were posterior reversible encephalopathy syndrome (n=52, 43 with seizures), sinus venous thrombosis (n=28, 9 with seizures), and isolated seizures (n=16). The most significant SNP identified by the genome-wide association studies did not reach genomic significance (lowest P-value: 1.11x10-6), but several were annotated in genes regulating neuronal functions. In candidate SNP analysis, ATXN1 rs68082256, related to epilepsy, was associated with seizures in patients <10 years (P=0.01). ATXN1 rs68082256 was validated in the Australian cohort with diverse CNS toxicities (P=0.04). The role of ATXN1 as well as the novel SNP in neurotoxicity in pediatric ALL should be further explored.Peer reviewe

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Chromosome Translocation t(14;21)(q11;q22) Activates Both OLIG1 and OLIG2 in Pediatric T-cell Lymphoblastic Malignancies and May Signify Adverse Prognosis

    No full text
    Background/Aim: The chromosome translocation t(14;21)(q11;q22) was reported in four pediatric T-cell lymphoblastic leukemias and was shown to activate the OLIG2 gene. Materials and Methods: A pediatric T-cell lymphoblastic lymphoma was investigated using G-banding chromosome analysis, fluorescence in situ hybridization (FISH), and immunocytochemistry. Results: The malignant cells carried a t(14;21)(q11;q22) aberration. The translocation moves the enhancer elements of TRA/TRD from band 14q11 to 21q22, a few thousands kbp downstream of OLIG1 and OLIG2, resulting in the production of both OLIG1 and OLIG2 proteins. Conclusion: The translocation t(14;21)(q11;q22) occurs in some pediatric T-cell lymphoblastic malignancies. Activation of both OLIG1 and OLIG2 by t(14;21)(q11;q22) in T-lymphoblasts and the ensuing deregulation of thousands of genes could explain the highly malignant disease and resistance to treatment that has characterized this small group of patients

    Seizures during treatment of childhood acute lymphoblastic leukemia: A population-based cohort study

    Get PDF
    Background Seizures are common in children with acute lymphoblastic leukemia (ALL). As ALL survival rates are improving, the challenge to minimize treatment related side effects and late sequelae rises. Here, we studied the frequency, timing, etiology and risk factors of seizures in ALL patients. Methods The study included children aged 1–17.9 years at diagnosis of B-cell-precursor and T cell ALL who were treated according to the Nordic Society of Pediatric Haematology and Oncology (NOPHO) ALL2008 protocol between 2008 and 2015. Detailed patient data were acquired from the NOPHO ALL2008 registry and by review of medical records. Results Seizures occurred in 81/1464 (5.5%) patients. The cumulative incidence of seizures at one months was 1.7% (95% CI: 1.2–2.5) and at one year 5.3% (95% CI 4.2–6.5%). Patients aged 10–17.9 years, those with T cell immunophenotype, CNS involvement, or high-risk induction with dexamethasone had higher risk for seizures in univariable analyses. Only age remained a risk factor in multivariable analyses (the cumulative incidence of seizures for patients 10–17.9 years old at one year was 9.0% (95% CI: 6.2–12.9)). Of the 81 patients with seizures, 43 had posterior reversible encephalopathy syndrome (PRES), 15 had isolated seizures, nine had sinus venous thrombosis (SVT), three had stroke-like syndrome, and 11 had other neurotoxicities. Epilepsy diagnosis was reported in totally 11 ALL survivors at last follow up. Conclusion Seizures are relatively common in ALL patients and occur most often in patients with PRES, SVT, or as an isolated symptom. Older children have higher risk of seizures.Peer reviewe

    Does minimal central nervous system involvement in childhood acute lymphoblastic leukemia increase the risk for central nervous system toxicity?

    No full text
    Central nervous system (CNS) involvement in childhood acute lymphoblastic leukemia (ALL) implicates enhanced intrathecal chemotherapy, which is related to CNS toxicity. Whether CNS involvement alone contributes to CNS toxicity remains unclear. We studied the occurrence of all CNS toxicities, seizures, and posterior reversible encephalopathy syndrome (PRES) in children with ALL without enhanced intrathecal chemotherapy with CNS involvement (n = 64) or without CNS involvement (n = 256) by flow cytometry. CNS involvement increased the risk for all CNS toxicities, seizures, and PRES in univariate analysis and, after adjusting for induction therapy, for seizures (hazard ratio [HR] = 3.33; 95% confidence interval [CI]: 1.26-8.82; p = 0.016) and PRES (HR = 4.85; 95% CI: 1.71-13.75; p = 0.003)

    Does minimal central nervous system involvement in childhood acute lymphoblastic leukemia increase the risk for central nervous system toxicity?

    No full text
    Abstract Central nervous system (CNS) involvement in childhood acute lymphoblastic leukemia (ALL) implicates enhanced intrathecal chemotherapy, which is related to CNS toxicity. Whether CNS involvement alone contributes to CNS toxicity remains unclear. We studied the occurrence of all CNS toxicities, seizures, and posterior reversible encephalopathy syndrome (PRES) in children with ALL without enhanced intrathecal chemotherapy with CNS involvement (n = 64) or without CNS involvement (n = 256) by flow cytometry. CNS involvement increased the risk for all CNS toxicities, seizures, and PRES in univariate analysis and, after adjusting for induction therapy, for seizures (hazard ratio [HR] = 3.33; 95% confidence interval [CI]: 1.26–8.82; p = 0.016) and PRES (HR = 4.85; 95% CI: 1.71–13.75; p = 0.003)

    Acute central nervous system toxicity during treatment of pediatric acute lymphoblastic leukemia : phenotypes, risk factors and genotypes

    Get PDF
    Publisher Copyright: © 2022 Ferrata Storti Foundation Published under a CC BY-NC license.Central nervous system (CNS) toxicity is common at diagnosis and during treatment of pediatric acute lymphoblastic leukemia (ALL). We studied CNS toxicity in 1, 464 children aged 1.0-17.9 years, diagnosed with ALL and treated according to the Nordic Society of Pediatric Hematology and Oncology ALL2008 protocol. Genome-wide association studies, and a candidate single-nucleotide polymorphism (SNP; n=19) study were performed in 1, 166 patients. Findings were validated in an independent Australian cohort of children with ALL (n=797) in whom two phenotypes were evaluated: diverse CNS toxicities (n=103) and methotrexate-related CNS toxicity (n=48). In total, 135/1, 464 (9.2%) patients experienced CNS toxicity for a cumulative incidence of 8.7% (95% confidence interval: 7.31-10.20) at 12 months from diagnosis. Patients aged ≥10 years had a higher risk of CNS toxicity than had younger patients (16.3% vs. 7.4%; P<0.001). The most common CNS toxicities were posterior reversible encephalopathy syndrome (n=52, 43 with seizures), sinus venous thrombosis (n=28, 9 with seizures), and isolated seizures (n=16). The most significant SNP identified by the genome-wide association studies did not reach genomic significance (lowest P-value: 1.11x10-6), but several were annotated in genes regulating neuronal functions. In candidate SNP analysis, ATXN1 rs68082256, related to epilepsy, was associated with seizures in patients <10 years (P=0.01). ATXN1 rs68082256 was validated in the Australian cohort with diverse CNS toxicities (P=0.04). The role of ATXN1 as well as the novel SNP in neurotoxicity in pediatric ALL should be further explored.Peer reviewe

    Acute central nervous system toxicity during treatment of pediatric acute lymphoblastic leukemia : phenotypes, risk factors and genotypes

    No full text
    Central nervous system (CNS) toxicity is common at diagnosis and during treatment of pediatric acute lymphoblastic leukemia (ALL). We studied CNS toxicity in 1,464 children aged 1.0-17.9 years, diagnosed with ALL and treated according to the Nordic Society of Pediatric Hematology and Oncology ALL2008 protocol. Genome-wide association studies, and a candidate single-nucleotide polymorphism (SNP; n=19) study were performed in 1,166 patients. Findings were validated in an independent Australian cohort of children with ALL (n=797) in whom two phenotypes were evaluated: diverse CNS toxicities (n=103) and methotrexate-related CNS toxicity (n=48). In total, 135/1,464 (9.2%) patients experienced CNS toxicity for a cumulative incidence of 8.7% (95% confidence interval: 7.31-10.20) at 12 months from diagnosis. Patients aged &gt;= 10 years had a higher risk of CNS toxicity than had younger patients (16.3% vs. 7.4%; P &lt; 0.001). The most common CNS toxicities were posterior reversible encephalopathy syndrome (n=52, 43 with seizures), sinus venous thrombosis (n=28, 9 with seizures), and isolated seizures (n=16). The most significant SNP identified by the genome-wide association studies did not reach genomic significance (lowest P-value: 1.11x10(-6)), but several were annotated in genes regulating neuronal functions. In candidate SNP analysis, ATXN1 rs68082256, related to epilepsy, was associated with seizures in patients &lt; 10 years (P=0.01). ATXN1 rs68082256 was validated in the Australian cohort with diverse CNS toxicities (P=0.04). The role of ATXN1 as well as the novel SNP in neurotoxicity in pediatric ALL should be further explored
    corecore