6 research outputs found

    Luteolin Pretreatment Ameliorates Myocardial Ischemia/Reperfusion Injury by lncRNA-JPX/miR-146b Axis

    No full text
    Background. In the present study, we aimed to find out whether luteolin (Lut) pretreatment could ameliorate myocardial ischemia/reperfusion (I/R) injury by regulating the lncRNA just proximal to XIST (JPX)/microRNA-146b (miR-146b) axis. Methods. We established the models in vitro (HL-1 cells) and in vivo (C57BL/6J mice) to certify the protection mechanism of Lut pretreatment on myocardial I/R injury. Dual luciferase reporter gene assay was utilized for validating that JPX could bind to miR-146b. JPX and miR-146b expression levels were determined by RT-qPCR. Western blot was utilized to examine apoptosis-related protein expression levels, including cleaved caspase-9, caspase-9, cleaved caspase-3, caspase-3, Bcl-2, Bax, and BAG-1. Apoptosis was analyzed by Annexin V-APC/7-AAD dualstaining, Hoechst 33342 staining, as well as flow cytometry. Animal echocardiography was used to measure cardiac function (ejection fraction (EF) and fractional shortening (FS) indicators). Results. miR-146b was demonstrated to bind and recognize the JPX sequence site by dual luciferase reporter gene assay. The expression level of miR-146b was corroborated to be enhanced by H/R using RT-qPCR (P<0.001 vs. Con). Moreover, JPX could reduce the expression of miR-146b, whereas inhibiting JPX could reverse the alteration (P<0.001 vs. H/R, respectively). Western blot analysis demonstrated that Lut pretreatment increased BAG-1 expression level and Bcl-2/Bax ratio, but diminished the ratio of cleaved caspase 9/caspase 9 and cleaved caspase 3/caspase 3 (P<0.001 vs. H/R, respectively). Moreover, the cell apoptosis change trend, measured by Annexin V-APC/7-AAD dualstaining, Hoechst 33342 staining, along with flow cytometry, was consistent with that of apoptosis-related proteins. Furthermore, pretreatment with Lut improved cardiac function (EF and FS) (P<0.001 vs. I/R, respectively), as indicated in animal echocardiography. Conclusion. Our results demonstrated that in vitro and in vivo, Lut pretreatment inhibited apoptosis via the JPX/miR-146b axis, ultimately improving myocardial I/R injury

    Repeatability and agreement of AOCT-1000 M, RTVue XR and IOL master 500 in measuring corneal thickness mapping and axial length applying principle of optical coherence tomography

    No full text
    Abstract Purpose To evaluate the repeatability and agreement of Fourier-domain optical coherence tomography (AOCT-1000 M and RTVue XR) and partial coherence interferometry biometer (IOL Master 500) in measuring corneal thickness mapping and axial length respectively. Methods Corneal thickness was measured by AOCT-1000 M and RTVue XR. Axial lengths were measured by AOCT-1000 M and IOL Master 500. The repeatability and agreement of corneal thickness and axial length were calculated in two groups of devices. The intraclass correlation coefficient (ICC) was used to verify the repeatability of the device. The 95% confidence interval of the difference compared to the set cut-off value was used to verify the agreement between the two devices. Results A total of 60 subjects with 58 eyes were included. The central corneal thickness measured by AOCT-1000 M and RTVue XR were 504.46 ± 42.53 μm and 504.43 ± 42.89 μm respectively. The average difference between groups was 0.03 ± 4.58 μm, and the 95% confidence interval was (-1.17, 1.24), which was far less than the set threshold value of 15 μm (P < 0.001). Both RTVue XR and AOCT-1000 M had very good ICC values of central corneal thickness (0.998 and 0.994, respectively). The average axial lengths measured by AOCT-1000 M and IOL Master 500 were 24.28 ± 1.25 mm and 24.29 ± 1.26 mm respectively and the 95% confidence interval was (-0.02, 0.01), which was less than the set threshold value of 0.15 mm (P < 0.001). The ICC for both devices were 1.000. Conclusion Good repeatability and agreement were seen in measurements of central corneal thickness and axial length by AOCT-1000 M

    Are medical record front page data suitable for risk adjustment in hospital performance measurement? Development and validation of a risk model of in-hospital mortality after acute myocardial infarction

    No full text
    Objectives To develop a model of in-hospital mortality using medical record front page (MRFP) data and assess its validity in case-mix standardisation by comparison with a model developed using the complete medical record data.Design A nationally representative retrospective study.Setting Representative hospitals in China, covering 161 hospitals in modelling cohort and 156 hospitals in validation cohort.Participants Representative patients admitted for acute myocardial infarction. 8370 patients in modelling cohort and 9704 patients in validation cohort.Primary outcome measures In-hospital mortality, which was defined explicitly as death that occurred during hospitalisation, and the hospital-level risk standardised mortality rate (RSMR).Results A total of 14 variables were included in the model predicting in-hospital mortality based on MRFP data, with the area under receiver operating characteristic curve of 0.78 among modelling cohort and 0.79 among validation cohort. The median of absolute difference between the hospital RSMR predicted by hierarchical generalised linear models established based on MRFP data and complete medical record data, which was built as ‘reference model’, was 0.08% (10th and 90th percentiles: −1.8% and 1.6%). In the regression model comparing the RSMR between two models, the slope and intercept of the regression equation is 0.90 and 0.007 in modelling cohort, while 0.85 and 0.010 in validation cohort, which indicated that the evaluation capability from two models were very similar.Conclusions The models based on MRFP data showed good discrimination and calibration capability, as well as similar risk prediction effect in comparison with the model based on complete medical record data, which proved that MRFP data could be suitable for risk adjustment in hospital performance measurement

    Cell based therapies for ischemic stroke: From basic science to bedside

    No full text
    corecore