292 research outputs found

    Intracerebral implantation of human neural stem cells and motor recovery after stroke: multicentre prospective single-arm study (PISCES-2)

    Get PDF
    Background Human neural stem cell implantation may offer improved recovery from stroke. We investigated the feasibility of intracerebral implantation of the allogeneic human neural stem cell line CTX0E03 in the subacute—chronic recovery phase of stroke and potential measures of therapeutic response in a multicentre study. Methods We undertook a prospective, multicentre, single-arm, open-label study in adults aged >40 years with significant upper limb motor deficits 2–13 months after ischaemic stroke. 20 million cells were implanted by stereotaxic injection to the putamen ipsilateral to the cerebral infarct. The primary outcome was improvement by 2 or more points on the Action Research Arm Test (ARAT) subtest 2 at 3 months after implantation. Findings Twenty-three patients underwent cell implantation at eight UK hospitals a median of 7 months after stroke. One of 23 participants improved by the prespecified ARAT subtest level at 3 months, and three participants at 6 and 12 months. Improvement in ARAT was seen only in those with residual upper limb movement at baseline. Transient procedural adverse effects were seen, but no cell-related adverse events occurred up to 12 months of follow-up. Two deaths were unrelated to trial procedures. Interpretation Administration of human neural stem cells by intracerebral implantation is feasible in a multicentre study. Improvements in upper limb function occurred at 3, 6 and 12 months, but not in those with absent upper limb movement at baseline, suggesting a possible target population for future controlled trials. Funding ReNeuron, Innovate UK (application no 32074-222145). Trial registration number EudraCT Number: 2012-003482-1

    Psychological Network Analysis of General Self-Efficacy in High vs. Low Resilient Functioning Healthy Adults.

    Get PDF
    Resilience to stress has gained increasing interest by researchers from the field of mental health and illness and some recent studies have investigated resilience from a network perspective. General self-efficacy constitutes an important resilience factor. High levels of self-efficacy have shown to promote resilience by serving as a stress buffer. However, little is known about the role of network connectivity of self-efficacy in the context of stress resilience. The present study aims at filling this gap by using psychological network analysis to study self-efficacy and resilience. Based on individual resilient functioning scores, we divided a sample of 875 mentally healthy adults into a high and low resilient functioning group. To compute these scores, we applied a novel approach based on Partial Least Squares Regression on self-reported stress and mental health measures. Separately for both groups, we then estimated regularized partial correlation networks of a ten-item self-efficacy questionnaire. We compared three different global connectivity measures-strength, expected influence, and shortest path length-as well as absolute levels of self-efficacy between the groups. Our results supported our hypothesis that stronger network connectivity of self-efficacy would be present in the highly resilient functioning group compared to the low resilient functioning group. In addition, the former showed higher absolute levels of general self-efficacy. Future research could consider using partial least squares regression to quantify resilient functioning to stress and to study the association between network connectivity and resilient functioning in other resilience factors

    Разработка и исследование автономной системы управления солнечной батареи

    Get PDF
    В данной работе выполнен анализ динамических характеристик системы ориентации солнечной батареи, осуществляющей слежение за перемещением солнца с использованием MatLab-моделирования. Отслеживание таких объектов возможно при условии знания его координат. Одним из требований, предъявляемых к следящему электроприводу, являются требования минимума статической и динамической ошибок позиционирования устройства. При эксплуатации систем слежения в удаленных местах так же появляется требование по сокращению потребления электроэнергии самой системы. Для снижения электропотребления необходимо уменьшать колебания антенны в режиме слежения.In this work, an analysis is made of the dynamic characteristics of a solar battery orientation system that monitors the movement of the sun using MatLab modeling. Tracking of such objects is possible under condition of knowledge of its coordinates. One of the requirements for a servomotor drive is the requirements of a minimum of static and dynamic device positioning errors. When operating tracking systems in remote locations, there is also a requirement to reduce the electricity consumption of the system itself. To reduce power consumption, it is necessary to reduce antenna oscillations in tracking mode

    Early Motor Balance and Coordination Training Increased Synaptophysin in Subcortical Regions of the Ischemic Rat Brain

    Get PDF
    The aim of this study was to evaluate the effect of early motor balance and coordination training on functional recovery and brain plasticity in an ischemic rat stroke model, compared with simple locomotor exercise. Adult male Sprague-Dawley rats with cortical infarcts were trained under one of four conditions: nontrained control, treadmill training, motor training on the Rota-rod, or both Rota-rod and treadmill training. All types of training were performed from post-operation day 1 to 14. Neurological and behavioral performance was evaluated by Menzies' scale, the prehensile test, and the limb placement test, at post-operation day 1, 7, and 14. Both Rota-rod and treadmill training increased the expression of synaptophysin in subcortical regions of the ischemic hemisphere including the hippocampus, dentate gyrus, and thalamus, but did not affect levels of brain-derived neurotrophic factor or tyrosin kinase receptor B. The Rota-rod training also improved Menzies' scale and limb placement test scores, whereas the simple treadmill training did neither. The control group showed significant change only in Menzies' scale score. This study suggests that early motor balance and coordination training may induce plastic changes in subcortical regions of the ischemic hemisphere after stroke accompanied with the recovery of sensorimotor performance

    Age-Related Comparisons of Evolution of the Inflammatory Response After Intracerebral Hemorrhage in Rats

    Get PDF
    In the hours to days after intracerebral hemorrhage (ICH), there is an inflammatory response within the brain characterized by the infiltration of peripheral neutrophils and macrophages and the activation of brain-resident microglia and astrocytes. Despite the strong correlation of aging and ICH incidence, and increasing information about cellular responses, little is known about the temporal- and age-related molecular responses of the brain after ICH. Here, we monitored a panel of 27 genes at 6 h and 1, 3, and 7 days after ICH was induced by injecting collagenase into the striatum of young adult and aged rats. Several molecules (CR3, TLR2, TLR4, IL-1β, TNFα, iNOS, IL-6) were selected to reflect the classical activation of innate immune cells (macrophages, microglia) and the potential to exacerbate inflammation and damage brain cells. Most of the others are associated with the resolution of innate inflammation, alternative pathways of macrophage/microglial activation, and the repair phase after acute injury (TGFβ, IL-1ra, IL-1r2, IL-4, IL-13, IL-4Rα, IL-13Rα1, IL-13Rα2, MRC1, ARG1, CD163, CCL22). In young animals, the up-regulation of 26 in 27 genes (not IL-4) was detected within the first week. Differences in timing or levels between young and aged animals were detected for 18 of 27 genes examined (TLR2, GFAP, IL-1β, IL-1ra, IL-1r2, iNOS, IL-6, TGFβ, MMP9, MMP12, IL-13, IL-4Rα, IL-13Rα1, IL-13Rα2, MRC1, ARG1, CD163, CCL22), with a generally less pronounced or delayed inflammatory response in the aged animals. Importantly, within this complex response to experimental ICH, the induction of pro-inflammatory, potentially harmful mediators often coincided with resolving and beneficial molecules

    Repeated amphetamine treatment induces neurite outgrowth and enhanced amphetamine-stimulated dopamine release in rat pheochromocytoma cells (PC12 cells) via a protein kinase C- and mitogen activated protein kinase-dependent mechanism

    Full text link
    Repeated intermittent treatment with amphetamine (AMPH) induces both neurite outgrowth and enhanced AMPH-stimulated dopamine (DA) release in PC12 cells. We investigated the role of protein kinases in the induction of these AMPH-mediated events by using inhibitors of protein kinase C (PKC), mitogen activated protein kinase (MAP kinase) or protein kinase A (PKA). PKC inhibitors chelerythrine (100 nm and 300 nm), Ro31-8220 (300 nm) and the MAP kinase kinase inhibitor, PD98059 (30 µm) inhibited the ability of AMPH to elicit both neurite outgrowth and the enhanced AMPH-stimulated DA release. The direct-acting PKC activator, 12- O -tetradecanoyl phorbol 13-acetate (TPA, 250 nm) mimicked the ability of AMPH to elicit neurite outgrowth and enhanced DA release. On the contrary, a selective PKA inhibitor, 100 µm Rp-8-Br-cAMPS, blocked only the development of AMPH-stimulated DA release but not the neurite outgrowth. Treatment of the cells with acute AMPH elicited an increase in the activity of PKC and MAP kinase but not PKA. These results demonstrated that AMPH-induced increases in MAP kinase and PKC are important for induction of both the enhancement in transporter-mediated DA release and neurite outgrowth but PKA was only required for the enhancement in AMPH-stimulated DA release. Therefore the mechanisms by which AMPH induces neurite outgrowth and the enhancement in AMPH-stimulated DA release can be differentiated.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66040/1/j.1471-4159.2003.02127.x.pd

    Stem Cell Mediation of Functional Recovery after Stroke in the Rat

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License.[Background]: Regenerative strategies of stem cell grafting have been demonstrated to be effective in animal models of stroke. In those studies, the effectiveness of stem cells promoting functional recovery was assessed by behavioral testing. These behavioral studies do, however, not provide access to the understanding of the mechanisms underlying the observed functional outcome improvement. [Methodology/Principal Findings]: In order to address the underlying mechanisms of stem cell mediated functional improvement, this functional improvement after stroke in the rat was investigated for six months after stroke by use of fMRI, somatosensory evoked potentials by electrophysiology, and sensorimotor behavior testing. Stem cells were grafted ipsilateral to the ischemic lesion. Rigorous exclusion of spontaneous recovery as confounding factor permitted to observe graft-related functional improvement beginning after 7 weeks and continuously increasing during the 6-month observation period. The major findings were i) functional improvement causally related to the stem cells grafting; ii) tissue replacement can be excluded as dominant factor for stem cell mediated functional improvement; iii) functional improvement occurs by exclusive restitution of the function in the original representation field, without clear contributions from reorganization processes, and iv) stem cells were not detectable any longer after six months. [Conclusions/Significance]: A delayed functional improvement due to stem cell implantation has been documented by electrophysiology, fMRI and behavioral testing. This functional improvement occurred without cells acting as a tissue replacement for the necrotic tissue after the ischemic event. Combination of disappearance of grafted cells after six months on histological sections with persistent functional recovery was interpreted as paracrine effects by the grafted stem cells being the dominant mechanism of cell activity underlying the observed functional restitution of the original activation sites. Future studies will have to investigate whether the stem cell mediated improvement reactivates the original representation target field by using original connectivity pathways or by generating/activating new ones for the stimulus.Financial support from the Hertie Foundation (Germany), and EU grants of the FP-6: DiMI (LSHB-CT-2005-512146), EMIL (LSHC-CT-2004-503569) and Stem Stroke (LSHB-CT-2006-037526) are gratefully acknowledged.Peer Reviewe

    Systematic review and meta-analysis of the efficacy of interleukin-1 receptor antagonist in animal models of stroke: an update

    Get PDF
    Interleukin-1 receptor antagonist (IL-1 RA) is an anti-inflammatory protein used clinically to treat rheumatoid arthritis and is considered a promising candidate therapy for stroke. Here, we sought to update the existing systematic review and meta-analysis of IL-1 RA in models of ischaemic stroke, published in 2009, to assess efficacy, the range of circumstances in which efficacy has been tested and whether the data appear to be confounded due to reported study quality and publication bias. We included 25 sources of data, 11 of which were additional to the original review. Overall, IL-1 RA reduced infarct volume by 36.2 % (95 % confidence interval 31.6–40.7, n = 76 comparisons from 1283 animals). Assessments for publication bias suggest 30 theoretically missing studies which reduce efficacy to 21.9 % (17.3–26.4). Efficacy was higher where IL-1 RA was administered directly into the ventricles rather than peripherally, and studies not reporting allocation concealment during the induction of ischaemia reported larger treatment effects. The preclinical data supporting IL-1 RA as a candidate therapy for ischaemic stroke have improved. The reporting of measures to reduce the risk of bias has improved substantially in this update, and studies now include the use of animals with relevant co-morbidities. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12975-016-0489-z) contains supplementary material, which is available to authorized users
    corecore