69 research outputs found

    Global axisymmetric Magnetorotational Instability with density gradients

    Get PDF
    We examine global incompressible axisymmetric perturbations of a differentially rotating MHD plasma with radial density gradients. It is shown that the standard magnetorotational instability, (MRI) criterion drawn from the local dispersion relation is often misleading. If the equilibrium magnetic field is either purely axial or purely toroidal, the problem reduces to finding the global radial eigenvalues of an effective potential. The standard Keplerian profile including the origin is mathematically ill-posed, and thus any solution will depend strongly on the inner boundary. We find a class of unstable modes localized by the form of the rotation and density profiles, with reduced dependence on boundary conditions.Comment: 22 pages, 5 figure

    Non-Hermitian chiral phononics through optomechanically-induced squeezing

    Full text link
    Imposing chirality on a physical system engenders unconventional energy flow and responses, such as the Aharonov-Bohm effect and the topological quantum Hall phase for electrons in a symmetry-breaking magnetic field. Recently, great interest has arisen in combining that principle with broken Hermiticity to explore novel topological phases and applications. Here, we report unique phononic states formed when combining the controlled breaking of time-reversal symmetry with non-Hermitian dynamics, both induced through time-modulated radiation pressure forces in small nano-optomechanical networks. We observe chiral energy flow among mechanical resonators in a synthetic dimension and Aharonov-Bohm tuning of their hybridised modes. Introducing particle-non-conserving squeezing interactions, we discover a non-Hermitian Aharonov-Bohm effect in ring-shaped networks in which mechanical quasiparticles experience parametric gain. The resulting nontrivial complex mode spectra indicate flux-tuning of squeezing, exceptional points, instabilities and unidirectional phononic amplification. This rich new phenomenology points the way to the exploration of new non-Hermitian topological bosonic phases and applications in sensing and transport that exploit spatiotemporal symmetry breaking.Comment: Included Main body and Methods (19 pages, 12 figures), in addition to the Supplementary Information document (13 pages, 5 figures

    Relaxed States in Relativistic Multi-Fluid Plasmas

    Full text link
    The evolution equations for a plasma comprising multiple species of charged fluids with relativistic bulk and thermal motion are derived. It is shown that a minimal fluid coupling model allows a natural casting of the evolution equations in terms of generalized vorticity which treats the fluid motion and electromagnetic fields equally. Equilibria can be found using a variational principle based on minimizing the total enstrophy subject to energy and helicity constraints. A subset of these equilibria correspond to minimum energy. The equations for these states are presented with example solutions showing the structure of the relaxed states.Comment: 8 pages, 2 figure

    Spectrum of Global Magnetorotational Instability in a Narrow Transition Layer

    Get PDF
    The Global Magnetorotational Instability (MRI) is investigated for a configuration in which the rotation frequency changes only in a narrow transition region. If the vertical wavelength of the unstable mode is of the same order or smaller than the width of this region, the growth rates can differ significantly from those given by a local analysis. In addition, the non-axisymmetric spectrum admits overstable modes with a non-trivial dependence on azimuthal wavelength, a feature missed by the local theory. In the limit of vanishing transition region width, the Rayleigh-centrifugal instability is recovered in the axisymmetric case, and the Kelvin-Helmholtz instability in the non-axisymmetric case.Comment: 21 Pages, 5 figure

    Quadrature nonreciprocity: unidirectional bosonic transmission without breaking time-reversal symmetry

    Full text link
    Nonreciprocity means that the transmission of a signal depends on its direction of propagation. Despite vastly different platforms and underlying working principles, the realisations of nonreciprocal transport in linear, time-independent systems rely on Aharonov-Bohm interference among several pathways and require breaking time-reversal symmetry. Here we extend the notion of nonreciprocity to unidirectional bosonic transport in systems with a time-reversal symmetric Hamiltonian by exploiting interference between beamsplitter (excitation preserving) and two-mode-squeezing (excitation non-preserving) interactions. In contrast to standard nonreciprocity, this unidirectional transport manifests when the mode quadratures are resolved with respect to an external reference phase. Hence we dub this phenomenon quadrature nonreciprocity. First, we experimentally demonstrate it in the minimal system of two coupled nanomechanical modes orchestrated by optomechanical interactions. Next, we develop a theoretical framework to characterise the class of networks exhibiting quadrature nonreciprocity based on features of their particle-hole graphs. In addition to unidirectionality, these networks can exhibit an even-odd pairing between collective quadratures, which we confirm experimentally in a four-mode system, and an exponential end-to-end gain in the case of arrays of cavities. Our work opens up new avenues for signal routing and quantum-limited amplification in bosonic systems.Comment: Includes: Main Text (7 pages, 4 figures), Methods & References (5 pages, 1 figure), Supplementary Information (14 pages, 2 figures

    Changes in the stool and oropharyngeal microbiome in obsessive-compulsive disorder

    Get PDF
    Although the etiology of obsessive-compulsive disorder (OCD) is largely unknown, it is accepted that OCD is a complex disorder. There is a known bi-directional interaction between the gut microbiome and brain activity. Several authors have reported associations between changes in gut microbiota and neuropsychiatric disorders, including depression or autism. Furthermore, a pediatric-onset neuropsychiatric OCD-related syndrome occurs after streptococcal infection, which might indicate that exposure to certain microbes could be involved in OCD susceptibility. However, only one study has investigated the microbiome of OCD patients to date. We performed 16S ribosomal RNA gene-based metagenomic sequencing to analyze the stool and oropharyngeal microbiome composition of 32 OCD cases and 32 age and gender matched controls. We estimated different α- and β-diversity measures and performed LEfSe and Wilcoxon tests to assess differences in bacterial distribution. OCD stool samples showed a trend towards lower bacterial α-diversity, as well as an increase of the relative abundance of Rikenellaceae, particularly of the genus Alistipes, and lower relative abundance of Prevotellaceae, and two genera within the Lachnospiraceae: Agathobacer and Coprococcus. However, we did not observe a different Bacteroidetes to Firmicutes ratio between OCD cases and controls. Analysis of the oropharyngeal microbiome composition showed a lower Fusobacteria to Actinobacteria ratio in OCD cases. In conclusion, we observed an imbalance in the gut and oropharyngeal microbiomes of OCD cases, including, in stool, an increase of bacteria from the Rikenellaceae family, associated with gut inflammation, and a decrease of bacteria from the Coprococcus genus, associated with DOPAC synthesis

    Inferring stabilizing mutations from protein phylogenies : application to influenza hemagglutinin

    Get PDF
    One selection pressure shaping sequence evolution is the requirement that a protein fold with sufficient stability to perform its biological functions. We present a conceptual framework that explains how this requirement causes the probability that a particular amino acid mutation is fixed during evolution to depend on its effect on protein stability. We mathematically formalize this framework to develop a Bayesian approach for inferring the stability effects of individual mutations from homologous protein sequences of known phylogeny. This approach is able to predict published experimentally measured mutational stability effects (ΔΔG values) with an accuracy that exceeds both a state-of-the-art physicochemical modeling program and the sequence-based consensus approach. As a further test, we use our phylogenetic inference approach to predict stabilizing mutations to influenza hemagglutinin. We introduce these mutations into a temperature-sensitive influenza virus with a defect in its hemagglutinin gene and experimentally demonstrate that some of the mutations allow the virus to grow at higher temperatures. Our work therefore describes a powerful new approach for predicting stabilizing mutations that can be successfully applied even to large, complex proteins such as hemagglutinin. This approach also makes a mathematical link between phylogenetics and experimentally measurable protein properties, potentially paving the way for more accurate analyses of molecular evolution

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
    corecore