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ABSTRACT

The global magnetorotational instability is investigated for a configuration in which the rotation frequency changes
only in a narrow transition region. If the vertical wavelength of the unstable mode is of the same order or smaller than
the width of this region, the growth rates can differ significantly from those given by a local analysis. In addition,
the nonaxisymmetric spectrum admits overstable modes with a nontrivial dependence on azimuthal wavelength,
a feature missed by the local theory. In the limit of vanishing transition region width, the Rayleigh-centrifugal
instability is recovered in the axisymmetric case, and the Kelvin–Helmholtz instability in the nonaxisymmetric
case.
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1. INTRODUCTION

The magnetorotational instability (MRI), first discussed by
Velikhov (1959) and Chandrasekhar (1960), became the subject
of much study when it was proposed as an angular momentum
transport mechanism in hydrodynamically stable astrophysical
systems by Balbus and Hawley (Balbus & Hawley 1991, 1998;
Hawley & Balbus 1999). Much of the research on MRI was
done using the local approximation, which uses the implicit
assumption that the radial variation of the equilibrium flow
is sufficiently small, allowing for modes to be sinusoidal in
both the radial and axial directions. However, this assumption
can lead to misleading results about the existence (Mahajan
& Krishan 2008) and spectrum (Pino & Mahajan 2008) of
MRI modes. When the rotation profile changes significantly,
globally unstable modes can be localized to the region of greatest
shear. A recent study by Mikhailovskii et al. (2008) claimed to
find “nonlocal” MRI modes in a configuration with a steplike
velocity profile. However, this mode is actually a Rayleigh-
type surface mode, possessing the greatest growth rate in the
hydrodynamic limit. We show that a similar system with a
narrow but finite region of velocity shear can support global
MRI modes if the shear is stable to the Rayleigh-centrifugal
mode when the vertical magnetic field vanishes. These global
modes are spatially confined to the transition region, and their
properties differ from modes found using a local analysis. In
particular, there exists a discrete spectrum of global modes, with
growth rates that differ significantly from the local prediction
if the vertical wavelength is comparable to the transition
region width. Overstability is possible for modes having an
azimuthal wavelength component. Our investigations examine
the full spectrum of such modes in both the axisymmetric and
nonaxisymmetric case.

2. BASE EQUATIONS

We consider a generic rotating equilibrium in cylindrical
geometry with flow V = rΩ(r)θ̂ and mass density ρ, permeated
by a uniform axial magnetic field B = Bzẑ. We include
gravitational and pressure terms in the ideal MHD equations,
so that the system remains relevant to the global MRI in

astrophysical settings such as accretion disks (Frank et al. 2002;
Hawley 2003) as well as to other rotating systems such as
laboratory experiments (e.g. Wang et al. 2008; Goodman & Ji
2002) and stellar core collapse (Akiyama et al. 2003). Since the
equilibrium is uniform in the axial and azimuthal directions, we
may take Fourier transforms in those directions (we neglect any
vertical stratification or gravitational terms in what follows).
The resulting equations for the normal modes of Lagrangian
perturbations (ξ = ξ (r)ei(kzz+mθ−ωt)) to this equilibrium are
(Frieman & Rotenberg 1960; Chanmugam 1979; Lynden-Bell
& Ostriker 1967):

−ω2ρξ − 2iρω(V · ∇)ξ − F(ξ ) = 0 (1)

where

F(ξ ) = ∇(γp∇ · ξ + (ξ · ∇)p) + ∇ · (ρξ )∇Φg

−∇(B · δB) + (B · ∇)δB + (δB · ∇)B
+ ∇ · (ρξ (V · ∇)V − ρV(V · ∇)ξ ). (2)

Here, γ is the adiabatic index, and p is the pressure, and Φg is
the gravitational potential. We have ignored self-gravity effects
by neglecting perturbations δΦg to this potential. The magnetic
field perturbation is δB = ∇ × (ξ × B). The tensor divergence
in the third line is taken with respect to the first coordinate, i.e.
∇ · (AB) = ∇i(AiBj ).

For incompressible perturbations (∇ · ξ = 0), the radial
component of Equation (1) and the divergence condition can
be reduced to
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ρμ0 is the Alfvén speed. N2 = −(ρ ′/ρ)(rΩ2 − ∂rΦg) is
the Brunt-Väisälä frequency. Further reduction results in a single
second-order differential equation in ξ r , the radial component
of the Lagrangian perturbation.(
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2.1. Cartesian Limit

This paper investigates global MRI when the rotation rate
changes only over a small transition region of width d, centered
at r = r0. When the region is narrow (d � r0) and sufficiently
far from the origin, it is expected that a Cartesian analysis should
suffice to capture the essence of the mode. Thus, we drop any
term which decays as 1/r or faster, except in the case of the
azimuthal mode number (m/r is replaced by the continuous
variable ky). Choosing coordinates x = r − r0, we take constant
equilibrium rotation rates of Ω = Ω1 for x < −d and Ω = Ω2
for x > d. In what follows, we take a linear change in the
rotation rate, i.e.,

Ω(x) = Ω1 + Ω2

2
+

Ω2 − Ω1

2

x

d
= Ω̄ +

ΔΩ
2

x

d
,

although the analysis does not qualitatively change if different
velocity profiles are considered. In the frame rotating with the
average angular velocity Ω̄, the Cartesian limit of Equation (5)
is

d

dx
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Here, k2 = k2
y + k2

z , Ā = −1/2 dΩ/d ln r = −r0ΔΩ/(2d), and
the Doppler-shifted frequency in the transition region |x| < d
is ωm = ω + 2Ākyx. The total change in velocity across the
transition region is ΔV = r0ΔΩ = −4Ād. Exterior to the region,
the rotation frequency and density are constant, and we have
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with ω1,2 = ω ± 2Ākyd. This admits decaying solutions of the
form

ξ 1,2 = exp(−κ1,2|x|)

κ1,2 = k

√√√√1 − 4k2
zρ
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1,2Ω̄2ω2
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k2F 2
1,2

. (8)

We must take the real part of the square root to be positive
so as to ensure that the modes are bounded. The Cartesian
approximation taken here is similar to the shearing sheet
model (Narayan et al. 1987; Balbus & Hawley 1998), however,
our model has well defined boundaries which admit spatially
decaying modes exterior to the transition region.

3. STEPLIKE TRANSITION

In this section, we show that the MRI is not present when
Equation (6) is solved for a steplike transition, (i.e., the limit
d → 0). Li & Narayan (2004) considered a similar situation
in the context of QPOs generated by Kelvin–Helmholtz (KH)
instability at an accretion disk–magnetosphere boundary layer.
This limit was also taken by Mikhailovskii et al. (2008, hereafter
M08), but resulted in the incorrect labeling of the instability as
MRI. Since the total pressure must be the same on both sides
of the interface, the component of the Lagrangian perturbation
normal to the interface, ξ r , must be continuous (Lynden-Bell &
Ostriker 1967), but ξ ′

r can have a jump. Integrating across the
narrow transition region, we arrive at

F2κ2 + F1κ1 = Δρ
(
k2g − k2

z r0Ω̄2
) − 4k2

z ρ̄r0Ω̄(ΔΩ). (9)

For axisymmetric modes, k = kz and ω1,2 → ω. Since the
frequency then appears only through ω2, one can show that
ω2 must be real (see, e.g., Chandrasekhar 1960); therefore the
frequency is purely real or purely imaginary. For an unstable
root, we can take ω → iγ, F1,2 → −(
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z v

2
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)
. For the

remainder of the present paper, we will take the density constant
across the boundary. Then Equation (9) simplifies to√(
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This result is equivalent to the mode equation (Equation (26))
of M08, in the limit of small rotation shear. We first note that
instability is only possible for Ω2 < Ω1. Solving for γ 2, we find
an unstable branch
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(11)
Taking the limit vA → 0, we arrive at the hydrodynamical result

γ 2 = 2Ω̄2

(√
1 + k2

z r
2
0 (Ω1 − Ω2)2

/
Ω̄4 − 1

)
.

Near marginal stability, with γ � Ω, we find γ = kzr0(Ω1 −
Ω2)/2 = −kz(ΔV )/2. Furthermore, since γ 2 in Equation (11)
decreases with increasing vA, the growth rate for a given
wavelength is maximum when the field is absent. In the
hydrodynamic limit, the instability exists at all wavelengths, the
growth rate increases without bound. The addition of a vertical
magnetic field acts as a surface tension, reducing the growth rate
of all wavelengths, and stabilizing modes with wavenumbers
above kz,crit = 2Ω̄|ΔV |/v2

A.
In the fully azimuthal case kz = 0, κ = ky = k, and

Equation (9) simplifies to

(ω + ky(ΔV )/2)2 + (ω − ky(ΔV )/2))2 = 0. (12)

This equation admits an imaginary solution with growth rate
γ = iω = ky |ΔV |/2. This is the standard KH instability
(compare to Chandrasekhar 1961, Section 101). We note that
there is no centrifugal effect; the instability is due solely to the
abrupt velocity change across the boundary. The growth rate
of this instability is the same as for the axisymmetric Rayleigh
instability if kz is replaced by ky, however, the vertical magnetic
field has no stabilizing effect in the pure azimuthal case. When
both ky and kz are nonzero, we again find that the magnetic
field has only a stabilizing effect. If the density is not constant
across the jump, additional destabilization can arise due to the
Rayleigh–Taylor instability (Li & Narayan 2004).
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In contrast to these results, the ideal magnetorotational
instability occurs when a weak magnetic field destabilizes a
plasma with a negative gradient in Ω, because the frozen flux
condition of MHD provides a coupling between adjacent fluid
elements. For a given wavelength, there is a critical magnetic
field strength which maximizes the growth rate of the MRI.
This leads us to conclude that, contrary to the assertions in M08,
treating a sharp velocity change in a rotating plasma as a steplike
transition admits only magnetically stabilized hydrodynamical
instabilities, but not the MRI.

4. FINITE-WIDTH TRANSITION

The steplike analysis that results in Equation (9) fails to
capture the MRI for two reasons. It makes the shear essentially
infinite, and makes the implicit assumption that ξ r is constant
throughout the transition region. A more robust treatment of the
problem is to retain the finite transition region of width 2d and
solve for ξ r on the interior. Normalizing lengths to d and all
frequencies to Ω̄, Equation (6) becomes

(Fmξ ′
r )′ =

[
FmK2 + K2

z

(
4A − 4(ω + 2KyAx)2

Fm

)]
ξ r . (13)

Where x runs from −1 to 1, K = kd is the unitless wavenumber,
and A = Ā/Ω̄. In order to maintain consistency with the
Cartesian limit, we must maintain d � r0. If A = r0(Ω2 −
Ω1)/(2dΩ̄) is not too large, we can still treat the whole system
as rigidly rotating with a small additional shear flow. Corrections
to this model are O

(
A2d2

/
r2

0

) � 1. Global modes can now be
found by matching ξ and ξ ′ at the left and right boundaries to
the exterior solutions.

4.1. Axisymmetric Modes

If there is no azimuthal component to the mode wavelength
(K = Kz = kzd), the only position dependence is in the density.
In the constant density case, the mode equation can be solved
analytically,
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Here ωA = kzvA = KzBz/(Ω̄d

√
μ0ρ) is the normalized

Alfvén frequency. The eigenmode solutions are sinusoidal
or exponential, depending on the sign of K2

r . Both external
boundary conditions can be simultaneously satisfied only when
K2

r is positive. The local limit is achieved when Kz → ∞,
and gives an upper bound to the most unstable mode. Provided
A < 1, the maximum local growth rate is γ = A, occurring
at an Alfvén frequency of ωA = √

A(2 − A). These are
characteristics of the local MRI (Balbus & Hawley 1998).
The instability is cut off for fields above ωA = 2

√
A. We

also see that for small magnetic field strength, the growth rate
scales as γ = ωA

√
A/(1 − A). If 1 < A < 2, the system is

hydrodynamically unstable, but small magnetic field strengths
will amplify the instability. Above A = 2, the instability
becomes the magnetically stabilized Rayleigh-centrifugal type,
as in the previous section.

For finite Kz, we can approximate solutions by taking rigid
wall solutions (ξ r = 0) at the boundaries. Thus, Kr = nπ/2 for
integer n. The eigenfunctions are real, and the mode number
label denotes the number of times that solution crosses the
origin. The system exhibits Sturmian behavior, that is, higher

ω

γ

Figure 1. Most unstable mode (dotted lines) as a function of ωA = kzvA for
A = 0.75,Kz = kzd = 0.1, 0.5, 1, 5, and 10. When Kz is small, the maximum
growth rate and the cutoff frequency are much lower than in the local limit (solid
line).

values of n are more stable (Goedbloed & Poedts 2004). There is
an unstable mode for every n up to a critical nmax which satisfies
the marginal stability equation:

n2
max = 4K2

z

π2
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ω2
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= 4
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4
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v2
A

− K2
z

)
. (15)

When Kz is large, there are many discrete modes which satisfy
the global dispersion relation. The number of modes increases
without bound as Kz increases with fixed ωA. However, for
fixed magnetic field strength vA, the Alfvén frequency will also
increase with Kz, reducing nmax, as well as the growth rate of
the fastest growing mode. The critical parameter dictating the
importance of these global effects is the ratio of the Alfvén
transit time across the gap to the rotation rate, since for the
fastest growing mode, Ωd/vA ∼ Kz. Even if the field is weak
compared to the local rotation speed vA � r0Ω, global effects
can be important in the d � r0 limit. The number of unstable
modes is reduced for small Kz. Additionally, we have assumed
infinite boundaries in the z-direction, but in real systems, the
vertical system size Lz imposes a minimum Kz = 2πd/Lz.

A shooting and matching code was used to find the discrete
solutions that satisfy the boundary conditions that match Equa-
tion (8). Figure 1 shows the most unstable global modes as a
function of ωA for fixed Kz = 0.1, 0.5, 1, 5, and 10. Note that
the growth rate vanishes for vanishing magnetic field, one of
the primary traits of the MRI. For smaller values of kzd, the
maximum growth rate and the cutoff frequency are much lower
than in the local limit. Figure 2 shows the growth rate of all
unstable axisymmetric modes for when Ωd/vA = 3.0. As Kz
(equivalently, ωA) is increased, the modes with smaller growth
rate begin to be cut off, until there is only one mode remaining.

4.2. Nonaxisymmetric Modes

4.2.1. Local Theory

The introduction of the azimuthal wavenumber removes the
Hermiticity of the problem, and the frequency is no longer
guaranteed to be purely real or imaginary, i.e., overstability
is possible. However, if we take K to be large with respect to the
radial change in ξ , and restrict our analysis to small x, we can
neglect this and obtain the local dispersion relation:(

ω2 − ω2
A

)2
+

(
4A

(
ω2 − ω2

A

) − 4ω2
)

cos2 θ (16)
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ω
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Figure 2. Growth rates of all five global modes for Ωd/vA = 3.0, A = 0.75.
In this case Kz = 3.0 ωA/Ω. Global effects are more important for the smaller
Alfvén frequencies.

where cos θ = Kz/K . This yields a growth rate of

γ 2 = −ω2
A−2(Ω − A) cos2 θ±2Ω cos θ

√
ω2

A + (Ω − A)2 cos2 θ,

which has a maximum of γ = A cos θ , at ωA =√
A(2 − A) cos θ . The instability is cut off above ωA =

2
√

A cos θ . The only prediction of the local theory is that the
addition of an azimuthal component of the wavelength is stabi-
lizing compared to the axisymmetric case.

4.2.2. Global Analysis

The local approximation is a poor one in the nonaxisymmetric
case, as all dependence on position is neglected. This approach
fails to capture overstability, and sheds no light on the effect
of finite ky on the spectrum of MRI. In particular, there is the
introduction of a continuum of Alfvén singularities on the real
frequency axis (see, for example, Hasegawa & Uberoi 1982, for
a discussion of the mathematical structure of this continuum).
For every value of −1 < x < 1, there are two values of ω which
satisfy (ω + 2AKyx)2 = ω2

A. Thus, there are two singularity
regions, ω ∈ {±ωA−2AKy,±ωA+2AKy}. When ωA < 2AKy ,
the two regions overlap.

We have investigated the Ky �= 0 mode equation (Equation
(13)) with a shooting and matching code. All complex roots were
found using a Lemur–Schur algorithm (Acton 1997). Figure 3
shows the dependence on the magnetic field strength of the
most unstable axisymmetric modes for fixed Ky and Kz, but at
a variety of different pitch angles tan θ = Ky/Kz. We have
taken a small value of kd = 0.5. We first notice that the cutoff
Alfvén frequency is the same for different angles, contrary to the
predictions of the local analysis. When the magnetic field is low,
the instability is suppressed compared to the axisymmetric case.
There is also a real part of the frequency, which indicates that
the mode is corotating with the plasma at some point x �= 0. As
the magnetic field is decreased, this corotation point approaches
the boundary, where ωr = ±2AKy = ±2AK sin θ .

More can be learned by examining the structure of all unstable
modes for increasing Ky. Figure 4 shows a representative
example with fixed Kz = 5.0 and ωA = 1.0. In the axisymmetric
limit, there are five purely growing modes for these parameters.
As Ky increases, the mode frequencies remain purely imaginary,
although the eigenfunctions become complex (we retain the
mode number ordering, although n no longer refers to the
number of nodes). The growth rates of the some of the modes
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ωA0.0
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0.5
γ ,ω r

Fastest Growing Mode, K 0.5

Figure 3. Growth rates (solid) and real components (dashed) of the frequency
for several angles (tan θ = Ky/Kz), with K = 0.5, A = 0.75. For smaller
ωA, the real part approaches the Alfvén singularity value at the boundary,
ω = 2AK sin θ , and the growth rate vanishes. For larger ωA, there are still pure
imaginary modes which have the normal MRI dependence, but these decrease
in growth rate as the angle is increased.

(A color version of this figure is available in the online journal.)

γ ω

Figure 4. All unstable global modes for Kz = 5.0, A = 0.75, ωA = 1.0. As Ky
is increased, pairs of purely growing modes become closer together in growth
rate. At the point of merger, the frequencies have a real part (dashed lines) which
starts at zero and increases linearly as Ky increases. Near Ky = 0.28, a new
purely growing mode is created. At a critical Ky for each mode, the growth rate
vanishes and the mode merges with the (stable) Alfvén continuum. The dotted
line gives the maximum growth rate predicted by the local theory. Although the
n = 0 mode is close to this limit in the axisymmetric case, the global growth
rates are significantly smaller for Ky �= 0.

(A color version of this figure is available in the online journal.)

decrease, while those of others increase. At Ky ∼ 0.1, the n = 0
and n = 1 modes have the same growth rate, and above that,
both modes have the same growth rate, but they now have a real
part. Due to the symmetry of the mode equation, if ωr + iωi are
solutions, then so are ±ωr ± iωi . Here we only plot unstable
roots with positive real parts (dashed lines in Figure 4). As Ky
increases further, the real part increases linearly and the growth
rate decreases. The growth rate of the most unstable global mode
agrees fairly well with the local theory in the axisymmetric case,
but the discrepancy grows rapidly as Ky increases.

At larger Ky, higher-order mode pairs merge as well. At
Ky ∼ 0.28, a new purely growing mode (n = 5) becomes
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Figure 5. (a) Eigenmode structure of n = 2 mode (ω = 0.5272i) for Kz = 5, Ky = 0.2, ωA/Ω = 1., and A = 0.75. The solid (dashed) line is the real (imaginary)
part of ξ r ). (b) Effective potential for the mode shown in (a). Since Ky is small, V is changed little from the axisymmetric case of a negative real constant. (c) For
Ky = 0.75, the same mode now has a complex frequency (ω = 0.4956 + 0.2245i), and has thus shifted its center to x0 = −ωr/(2Aky) = −0.472. (d) The effective
potential of the mode shown in (c) displays the near-resonance barrier on the right. Since the mode has shifted to the left, the other peak is outside the transition region.

(A color version of this figure is available in the online journal.)

accessible, and eventually others are created as well. When
Ky ∼ 1.0, the n = 6 complex mode merges with the real
Alfvén continuum. This trend continues until all instabilities
are cut off above Ky ∼ 4.3.

4.3. Effective Potential Formulation

The behavior of the nonaxisymmetric modes for varying Ky
can be understood in the following manner. If we make the

transformation y =
√

(ω2
m − ω2

A)ξ r then Equation (13) becomes

y ′′(x) =
(

K2 − 4A2K2
yω2

A + 4K2
z ω2

m − 4K2
z A

(
ω2

m −ω2
A

)
(
ω2

m − ω2
A

)2

)
y(x)

= V (x;ω)y(x), (17)

recalling that ωm = ω + 2AKyx. For a given set of parameters,
there is an effective (complex) potential for the perturbation.
If the y associated with a given potential can satisfy both
boundary conditions, then that perturbation is an eigenmode
of the system. The real part of the potential must therefore
be sufficiently negative over enough of the transition region if
the |y| is to decay on both sides of the region (since |y|′/|y|
must change sign). Axisymmetric MRI eigenmodes have a V
that is a negative real constant over the region. Decreasing
γ = �(ω) will make V more negative, so smaller growth
rates correspond to more spatial oscillations, in agreement
with the previous section. In the nonaxisymmetric case, if ω
is purely imaginary, 
(V ) is symmetric about x = 0 (�(V )
is antisymmetric). As long as γ �= 0, there is no Alfvén

singularity, but the potential changes the fastest near the points
of closest approach, x = (−ωr ± ωA)/(2AKy). The real part
of V resembles a positive resonance curve near these points,
with the growth rate γ directly related to the width of the
resonance. These “near-resonances” act as barriers, and the
modes are evanescent inside them. When Ky is very small,
these points lie far outside the transition region, and a given
eigenmode remains similar to its axisymmetric counterpart, as
seen in Figure 5(a). As Ky increases, the resonances move
closer to the boundary. Each mode at this point is related to
either the left or right resonance, so it becomes necessary for
the potential to shift, so as to keep only one resonance in the
transition region (Figure 5(c)). For an overstable mode, the 
(V )
is symmetric around x0 = −ωr/(2AKy). As the growth rate
decreases and ωr increases, the mode moves further over and
becomes more oscillatory, approaching an Alfvén continuum
mode at the boundary x = ±1.

5. CONCLUSIONS

Global studies of the magnetorotational instability tend to
depend strongly on specific boundary conditions. However,
when the rotation rate changes only in a small area, velocity
shear can give rise to an effective potential which spatially
confines global eigenmodes and reduces dependence on the
boundary conditions. We have examined an idealized case where
Ω(r) changes sharply between two areas of rigid rotation; such
a configuration has potential application to both astrophysical
(e.g., Heger et al. (2000), where sharp rotation gradients arise
in models of stellar core collapse) as well laboratory settings
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(e.g., Ekman flow). When the velocity change is treated as a
steplike transition as done in M08, the axisymmetric instability
is most unstable in the limit of vanishing magnetic field—we
thus conclude that this is a Rayleigh-type surface mode. In the
nonaxisymmetric regime, the steplike transition is susceptible
to the KH instability as well. When the shear region has
nonvanishing thickness, the unstable Rayleigh mode persists
when A = −1/2d ln Ωd ln r > 1. However, when the shear is
moderate, (A < 1) the flow is hydrodynamically stable, but is
destabilized by the addition of a small vertical field. This is the
hallmark of the MRI. There is a spectrum of purely growing
global axisymmetric instabilities. If the vertical wavelength is
comparable to the transition region width, the growth rates of
the most unstable global modes differ significantly from the
predictions of the local theory.

That the MRI results from the destabilization of the slow
Alfvén wave by rotation was shown in Balbus & Hawley
(1998). In the present analysis, we have shown that there is
a spectrum of nonaxisymmetric unstable and overstable global
modes; these modes connect smoothly to the Alfvén continuum.
For a given axial wavenumber kz, there is a complex dependence
on the azimuthal wavenumber ky. There exists a minimum
azimuthal wavelength below which perturbations are stable. The
interaction of these modes can have important consequences for
turbulence in the nonlinear regime—this will be the subject of
future work.

The authors thank Richard Hazeltine and J. Craig Wheeler
for useful discussions.
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