162 research outputs found

    Comparative endurance testing of the Biomet Matthews Nail and the Dynamic Compression Screw, in simulated condylar and supracondylar femoral fractures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The dynamic compression screw is a plate and screws implant used to treat fractures of the distal femur. The Biomet Matthews Nail is a new retrograde intramedullary nail designed as an alternative surgical option to treat these fractures. The objective of this study was to assess the comparative endurance of both devices.</p> <p>Method</p> <p>The dynamic compression screw (DCS) and Biomet Matthews Nail (BMN) were implanted into composite femurs, which were subsequently cyclically loaded using a materials testing machine. Simulated fractures were applied to each femur prior to the application of load. Either a Y type fracture or a transverse osteotomy was prepared on each composite femur using a jig to enable consistent positioning of cuts.</p> <p>Results</p> <p>The Biomet Matthews Nail demonstrated a greater endurance limit load over the dynamic compression screw in both fracture configurations.</p> <p>Conclusion</p> <p>The distal locking screws pass through the Biomet Matthews Nail in a unique "cruciate" orientation. This allows for greater purchase in the bone of the femoral condyle and potentially improves the stability of the fracture fixation. As these fractures are usually in weak osteoporotic bone, the Biomet Matthews Nail represents a favourable surgical option in these patients.</p

    How to salvage a salvage endoprosthesis.

    Get PDF
    Custom-made endoprostheses can be linked to existing well-fixed implants in the treatment of complex periprosthetic femoral fractures. By adopting this salvage approach, secure implants can be retained in favour of patients undergoing more tissue disruptive procedures such as total femoral replacements. In this piece, we present a unique case illustrating a salvage strategy for treating a failed cement-linked salvage endoprosthesis, a complex scenario which to our knowledge has never before been reported

    A three-group study, internet-based, face-to-face based and standard- management after acute whiplash associated disorders (WAD) – choosing the most efficient and cost-effective treatment: study protocol of a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The management of Whiplash Associated Disorders is one of the most complicated challenges with high expenses for the health care system and society. There are still no general guidelines or scientific documentation to unequivocally support any single treatment for acute care following whiplash injury.</p> <p>The main purpose of this study is to try a new behavioural medicine intervention strategy at acute phase aimed to reduce the number of patients who have persistent problems after the whiplash injury. The goal is also to identify which of three different interventions that is most cost-effective for patients with Whiplash Associated Disorders. In this study we are controlling for two factors. First, the effect of behavioural medicine approach is compared with standard care. Second, the manner in which the behavioural medicine treatment is administered, Internet or face-to-face, is evaluated in it's effectiveness and cost-effectiveness.</p> <p>Methods/Design</p> <p>The study is a randomized, prospective, experimental three-group study with analyses of cost-effectiveness up to two-years follow-up. <it>Internet – based programme </it>and <it>face-to-face group treatment programme </it>are compared to <it>standard-treatment </it>only. Patient follow-ups take place three, six, twelve and 24 months, that is, short-term as well as long-term effects are evaluated. Patients will be enrolled via the emergency ward during the first week after the accident.</p> <p>Discussion</p> <p>This new self-help management will concentrate to those psychosocial factors that are shown to be predictive in long-term problems in Whiplash Associated Disorders, i.e. the importance of self-efficacy, fear of movement, and the significance of catastrophizing as a coping strategy for restoring and sustaining activities of daily life. Within the framework of this project, we will develop, broaden and evaluate current physical therapy treatment methods for acute Whiplash Associated Disorders. The project will contribute to the creation of a cost-effective behavioural medicine approach to management of acute Whiplash Associated Disorders. The results of this study will answer an important question; on what extent and how should these patients be treated at acute stage and how much does the best management cost.</p> <p>Trial registration number</p> <p>Current Controlled Trials ISRCTN61531337</p

    Increased Litterfall in Tropical Forests Boosts the Transfer of Soil CO2 to the Atmosphere

    Get PDF
    Aboveground litter production in forests is likely to increase as a consequence of elevated atmospheric carbon dioxide (CO2) concentrations, rising temperatures, and shifting rainfall patterns. As litterfall represents a major flux of carbon from vegetation to soil, changes in litter inputs are likely to have wide-reaching consequences for soil carbon dynamics. Such disturbances to the carbon balance may be particularly important in the tropics because tropical forests store almost 30% of the global soil carbon, making them a critical component of the global carbon cycle; nevertheless, the effects of increasing aboveground litter production on belowground carbon dynamics are poorly understood. We used long-term, large-scale monthly litter removal and addition treatments in a lowland tropical forest to assess the consequences of increased litterfall on belowground CO2 production. Over the second to the fifth year of treatments, litter addition increased soil respiration more than litter removal decreased it; soil respiration was on average 20% lower in the litter removal and 43% higher in the litter addition treatment compared to the controls but litter addition did not change microbial biomass. We predicted a 9% increase in soil respiration in the litter addition plots, based on the 20% decrease in the litter removal plots and an 11% reduction due to lower fine root biomass in the litter addition plots. The 43% measured increase in soil respiration was therefore 34% higher than predicted and it is possible that this ‘extra’ CO2 was a result of priming effects, i.e. stimulation of the decomposition of older soil organic matter by the addition of fresh organic matter. Our results show that increases in aboveground litter production as a result of global change have the potential to cause considerable losses of soil carbon to the atmosphere in tropical forests

    Neural Correlates of Visual Motion Prediction

    Get PDF
    Predicting the trajectories of moving objects in our surroundings is important for many life scenarios, such as driving, walking, reaching, hunting and combat. We determined human subjects’ performance and task-related brain activity in a motion trajectory prediction task. The task required spatial and motion working memory as well as the ability to extrapolate motion information in time to predict future object locations. We showed that the neural circuits associated with motion prediction included frontal, parietal and insular cortex, as well as the thalamus and the visual cortex. Interestingly, deactivation of many of these regions seemed to be more closely related to task performance. The differential activity during motion prediction vs. direct observation was also correlated with task performance. The neural networks involved in our visual motion prediction task are significantly different from those that underlie visual motion memory and imagery. Our results set the stage for the examination of the effects of deficiencies in these networks, such as those caused by aging and mental disorders, on visual motion prediction and its consequences on mobility related daily activities

    A multi-ethnic genome-wide association study implicates collagen matrix integrity and cell differentiation pathways in keratoconus

    Get PDF
    Keratoconus is characterised by reduced rigidity of the cornea with distortion and focal thinning that causes blurred vision, however, the pathogenetic mechanisms are unknown. It can lead to severe visual morbidity in children and young adults and is a common indication for corneal transplantation worldwide. Here we report the first large scale genome-wide association study of keratoconus including 4,669 cases and 116,547 controls. We have identified significant association with 36 genomic loci that, for the first time, implicate both dysregulation of corneal collagen matrix integrity and cell differentiation pathways as primary disease-causing mechanisms. The results also suggest pleiotropy, with some disease mechanisms shared with other corneal diseases, such as Fuchs endothelial corneal dystrophy. The common variants associated with keratoconus explain 12.5% of the genetic variance, which shows potential for the future development of a diagnostic test to detect susceptibility to disease

    Flanker performance in female college students with ADHD: a diffusion model analysis

    Get PDF
    Attention-deficit hyperactivity disorder (ADHD) is characterized by poor adaptation to environmental demands, which leads to various everyday life problems. The present study had four aims: (1) to compare performance in a flanker task in female college students with and without ADHD (N = 39) in a classical analyses of reaction time and error rate and studying the underlying processes using a diffusion model, (2) to compare the amount of focused attention, (3) to explore the adaptation of focused attention, and (4) to relate adaptation to psychological functioning. The study followed a 2-between (group: ADHD vs. control) × 2-within (flanker conflict: incongruent vs. congruent) × 2-within (conflict frequency: 20 vs. 80 %) design. Compared to a control group, the ADHD group displayed prolonged response times accompanied by fewer errors in a flanker task. Results from the diffusion model analyses revealed that the members of the ADHD group showed deficits in non-decisional processes (i.e., higher non-decision time) and leaned more toward accuracy than participants without ADHD (i.e., setting higher boundaries). The ADHD group showed a more focused attention and less adaptation to the task conditions which is related to psychological functioning. Deficient non-decisional processes and poor adaptation are in line with theories of ADHD and presumably typical for the ADHD population, although this has not been shown using a diffusion model. However, we assume that the cautious strategy of trading speed of for accuracy is specific to the subgroup of female college students with ADHD and might be interpreted as a compensation mechanism

    Implementing long-term EAP follow-up with clients and family members to help prevent relapse—With implications for primary prevention

    Full text link
    This paper reports on a study in progress which involves (a) regular post-treatment contact by employee assistance program (EAP) staff with employees who seek help through the EAP, and (b) contact with a family member or other support person designated by the employee. The contacts are designed to provide support for maintenance of therapeutic gains, assistance in adjusting to current life situations, and early identification and prevention of relapse. The study will evaluate the process of initiating these contacts and will examine their effectiveness at reducing relapse. Factors associated with implementing these services in an EAP context are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45089/1/10935_2005_Article_BF02197146.pd

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders
    corecore