8 research outputs found
Tardigrades as potential bioindicators in biological wastewater treatment plants
The aim of this study was the evaluation of the relationship between the presence of tardigrades and various levels of sewage pollution in different tanks of a wastewater treatment plant. The study was carried out in the wastewater treatment plant located near Poznań (Poland) during one research season. The study was conducted in a system consisting of three bioreactor tanks and a secondary clarifier tank, sampled at regular time periods. The presence of one tardigrade species, Thulinius ruffoi, was recorded in the samples. The tardigrades occurred in highest abundance in the tanks containing wastewater with a higher nutrient load. Thulinius ruffoi was mainly present in well-oxygenated activated sludge and its abundance was subject to seasonal fluctuations; however, its preference for more polluted tanks seems to be consistent across the year. Although more detailed experimental study is needed to support the observations, our data indicate that T. ruffoi has a high potential to be used as a bioindicator of nutrient load changes
Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins
Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.Peer reviewe
Harmful blooms across a longitudinal gradient in central Europe during heatwave: Cyanobacteria biomass, cyanotoxins, and nutrients
Climate change has increased the frequency, duration and intensity of heatwaves in Europe. These extreme events result in alterations of physical, chemical, and biological properties of lakes that may synergistically promote cyanobacterial dominance. In our study we focused on cyanobacterial blooms in lakes distributed over a longitudinal gradient in Central Europe during one of the “top ten European heat waves” in summer 2015. 92 lakes were included in the study, located across three climatic subregions: cool northern lakes, situated in Lithuania, temperate northern lakes in Poland, and warm northern lakes in Croatia. The objective of the study was to determine if cyanobacterial biomass, predominant species, and cyanotoxin concentration differed, across the south-north gradient, as a function of water temperature, total phosphorus, and total nitrogen. Statistical significance of observed patterns was tested using the Kruskal-Wallis rank sum test and the generalized linear model. We found the lowest average epilimnion temperature, but the highest average cyanobacterial biomass in the northern, ‘cool’ lakes while the highest average temperature with the lowest average cyanobacterial biomass in the southern, ‘warm’ lakes. The concentration of cyanotoxins was also the highest in the ‘cool’ lakes. Total phosphorus and total nitrogen correlated significantly with cyanobacterial biomass, cyanotoxins concentration and biomass of some cyanobacterial species (mainly Planktothrix agardhii), regardless of the latitude. Only in the ‘cool’ lakes concentration of cyanotoxins (microcystins and anatoxin-a) correlated significantly with cyanobacterial biomass and the biomass of some dominant cyanobacterial species (P. agardhii). Our results emphasized the differences of heat weaves impact on lakes of various latitudes, with the strongest increase in toxic cyanobacterial blooms in northern ‘cool’ lakes, situated in high latitudes. On the other hand, nutrients directly enhanced blooms across all the studied latitudes of Central Europe. The cyanobacteria species dominating in blooms might be recognized as ecological indicators of climate change, especially in the north-eastern part of Europe
Stratification strength and light climate explain variation in chlorophyll a at the continental scale in a European multilake survey in a heatwave summer
To determine the drivers of phytoplankton biomass, we collected standardized morphometric, physical, and biological data in 230 lakes across the Mediterranean, Continental, and Boreal climatic zones of the European continent. Multilinear regression models tested on this snapshot of mostly eutrophic lakes (median total phosphorus [TP] = 0.06 and total nitrogen [TN] = 0.7 mg L-1), and its subsets (2 depth types and 3 climatic zones), show that light climate and stratification strength were the most significant explanatory variables for chlorophyll a (Chl a) variance. TN was a significant predictor for phytoplankton biomass for shallow and continental lakes, while TP never appeared as an explanatory variable, suggesting that under high TP, light, which partially controls stratification strength, becomes limiting for phytoplankton development. Mediterranean lakes were the warmest yet most weakly stratified and had significantly less Chl a than Boreal lakes, where the temperature anomaly from the long-term average, during a summer heatwave was the highest (+4 degrees C) and showed a significant, exponential relationship with stratification strength. This European survey represents a summer snapshot of phytoplankton biomass and its drivers, and lends support that light and stratification metrics, which are both affected by climate change, are better predictors for phytoplankton biomass in nutrient-rich lakes than nutrient concentrations and surface temperature.Peer reviewe
Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins
Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains
Stratification strength and light climate explain variation in chlorophyll a at the continental scale in a European multilake survey in a heatwave summer
To determine the drivers of phytoplankton biomass, we collected standardized morphometric, physical, and biological data in 230 lakes across the Mediterranean, Continental, and Boreal climatic zones of the European continent. Multilinear regression models tested on this snapshot of mostly eutrophic lakes (median total phosphorus [TP] = 0.06 and total nitrogen [TN] = 0.7 mg L−1), and its subsets (2 depth types and 3 climatic zones), show that light climate and stratification strength were the most significant explanatory variables for chlorophyll a (Chl a) variance. TN was a significant predictor for phytoplankton biomass for shallow and continental lakes, while TP never appeared as an explanatory variable, suggesting that under high TP, light, which partially controls stratification strength, becomes limiting for phytoplankton development. Mediterranean lakes were the warmest yet most weakly stratified and had significantly less Chl a than Boreal lakes, where the temperature anomaly from the long-term average, during a summer heatwave was the highest (+4°C) and showed a significant, exponential relationship with stratification strength. This European survey represents a summer snapshot of phytoplankton biomass and its drivers, and lends support that light and stratification metrics, which are both affected by climate change, are better predictors for phytoplankton biomass in nutrient-rich lakes than nutrient concentrations and surface temperature
Data Descriptor: A European Multi Lake Survey dataset of environmental variables, phytoplankton pigments and cyanotoxins
Under ongoing climate change and increasing anthropogenic activity, which continuously challenge ecosystem resilience, an in-depth understanding of ecological processes is urgently needed. Lakes, as providers of numerous ecosystem services, face multiple stressors that threaten their functioning. Harmful cyanobacterial blooms are a persistent problem resulting from nutrient pollution and climate-change induced stressors, like poor transparency, increased water temperature and enhanced stratification. Consistency in data collection and analysis methods is necessary to achieve fully comparable datasets and for statistical validity, avoiding issues linked to disparate data sources. The European Multi Lake Survey (EMLS) in summer 2015 was an initiative among scientists from 27 countries to collect and analyse lake physical, chemical and biological variables in a fully standardized manner. This database includes in-situ lake variables along with nutrient, pigment and cyanotoxin data of 369 lakes in Europe, which were centrally analysed in dedicated laboratories. Publishing the EMLS methods and dataset might inspire similar initiatives to study across large geographic areas that will contribute to better understanding lake responses in a changing environment