8 research outputs found

    Polyaniline nanoparticles for the selective recognition of aldrin: Synthesis, characterization, and adsorption properties

    No full text
    We report the preparation, characterization, and property evaluation of molecularly imprinted polyaniline nanoparticles that can be used for the selective recognition of aldrin. The molecularly imprinted polyaniline nanoparticles were prepared by inverted emulsion polymerization using aldrin as a template and aniline as a functional monomer. The prepared nanoparticles were characterized using UV–vis spectroscopy, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. The spectral data confirmed that aldrin was successfully incorporated into the polymer matrix. Atomic force microscopy and scanning electron microscopy analyses revealed that the prepared nanoparticles were spherical in nature with sizes ranging from 60 to 100 nm for nonimprinted particles and from 500 to 1500 nm for imprinted particles. The surface morphology changed from smooth to rough upon the incorporation of aldrin molecules. The electrical properties were evaluated using a four-point probe coupled to a source meter. The nonimprinted nanoparticles showed an electrical conductivity of 4.149 S/cm, which was reduced to 0.546 S/cm in molecularly imprinted polyaniline. The equilibrium dissociation constant and free equilibrium concentration were found to be 0.6 and 0.799 ng/μL, respectively. The adsorption characteristics of aldrin and dichlorodiphenyltrichloroethane (DDT) were investigated to determine the selectivity of the imprinted nanoparticles. The distribution coefficients for DDT and aldrin were 0.76 ng/ng and 1.31 μL/ng, respectively, indicating that the imprinted nanoparticles had a stronger affinity for aldrin than for DDT.The International Programme in Chemical Sciences (IPICS), Uppsala University, Sweden.https://www.elsevier.com/locate/synmet2018-11-01hj2018Physic

    A review on conducting polymer reinforced polyurethane composites

    No full text

    Energy harvesting research:the road from single source to multisource

    No full text
    Abstract Energy harvesting technology may be considered an ultimate solution to replace batteries and provide a long‐term power supply for wireless sensor networks. Looking back into its research history, individual energy harvesters for the conversion of single energy sources into electricity are developed first, followed by hybrid counterparts designed for use with multiple energy sources. Very recently, the concept of a truly multisource energy harvester built from only a single piece of material as the energy conversion component is proposed. This review, from the aspect of materials and device configurations, explains in detail a wide scope to give an overview of energy harvesting research. It covers single‐source devices including solar, thermal, kinetic and other types of energy harvesters, hybrid energy harvesting configurations for both single and multiple energy sources and single material, and multisource energy harvesters. It also includes the energy conversion principles of photovoltaic, electromagnetic, piezoelectric, triboelectric, electrostatic, electrostrictive, thermoelectric, pyroelectric, magnetostrictive, and dielectric devices. This is one of the most comprehensive reviews conducted to date, focusing on the entire energy harvesting research scene and providing a guide to seeking deeper and more specific research references and resources from every corner of the scientific community

    纳米结构导电聚合物及其复合材料的研究进展: 制备, 应用和展望

    No full text

    Energy Harvesting Research: The Road from Single Source to Multisource

    No full text
    corecore