554 research outputs found

    Structural and functional conservation of non-lumenized lymphatic endothelial cells in the mammalian leptomeninges

    Get PDF
    The vertebrate CNS is surrounded by the meninges, a protective barrier comprised of the outer dura mater and the inner leptomeninges, which includes the arachnoid and pial layers. While the dura mater contains lymphatic vessels, no conventional lymphatics have been found within the brain or leptomeninges. However, non-lumenized cells called Brain/Mural Lymphatic Endothelial Cells or Fluorescent Granule Perithelial cells (muLECs/BLECs/FGPs) that share a developmental program and gene expression with peripheral lymphatic vessels have been described in the meninges of zebrafish. Here we identify a structurally and functionally similar cell type in the mammalian leptomeninges that we name Leptomeningeal Lymphatic Endothelial Cells (LLEC). As in zebrafish, LLECs express multiple lymphatic markers, containing very large, spherical inclusions, and develop independently from the meningeal macrophage lineage. Mouse LLECs also internalize macromolecules from the cerebrospinal fluid, including Amyloid-β, the toxic driver of Alzheimer's disease progression. Finally, we identify morphologically similar cells co-expressing LLEC markers in human post-mortem leptomeninges. Given that LLECs share molecular, morphological, and functional characteristics with both lymphatics and macrophages, we propose they represent a novel, evolutionary conserved cell type with potential roles in homeostasis and immune organization of the meninges

    The Integrative Effects of Cognitive Reappraisal on Negative Affect: Associated Changes in Secretory Immunoglobulin A, Unpleasantness and ERP Activity

    Get PDF
    Although the regulatory role of cognitive reappraisal in negative emotional responses is widely recognized, this reappraisal's effect on acute saliva secretory immunoglobulin A (SIgA), as well as the relationships among affective, immunological, and event-related potential (ERP) changes, remains unclear. In this study, we selected only people with low positive coping scores (PCSs) as measured by the Trait Coping Style Questionnaire to avoid confounding by intrinsic coping styles. First, we found that the acute stress of viewing unpleasant pictures consistently decreased SIgA concentration and secretion rate, increased perceptions of unpleasantness and amplitude of late positive potentials (LPPs) between 200–300 ms and 400–1000 ms. After participants used cognitive reappraisal, their SIgA concentration and secretion rate significantly increased and their unpleasantness and LPP amplitudes significantly decreased compared with a control condition. Second, we found a significantly positive correlation between the increases in SIgA and the decreases in unpleasantness and a significantly negative correlation between the increases in SIgA and the increases in LPP across the two groups. This study is the first to demonstrate that cognitive reappraisal reverses the decrease of SIgA. In addition, it revealed strong correlations among affective, SIgA and electrophysiological changes with convergent multilevel evidence

    A Novel Hepatitis C Virus Genotyping Method Based on Liquid Microarray

    Get PDF
    The strategy used to treat HCV infection depends on the genotype involved. An accurate and reliable genotyping method is therefore of paramount importance. We describe here, for the first time, the use of a liquid microarray for HCV genotyping. This liquid microarray is based on the 5′UTR — the most highly conserved region of HCV — and the variable region NS5B sequence. The simultaneous genotyping of two regions can be used to confirm findings and should detect inter-genotypic recombination. Plasma samples from 78 patients infected with viruses with genotypes and subtypes determined in the Versant™ HCV Genotype Assay LiPA (version I; Siemens Medical Solutions, Diagnostics Division, Fernwald, Germany) were tested with our new liquid microarray method. This method successfully determined the genotypes of 74 of the 78 samples previously genotyped in the Versant™ HCV Genotype Assay LiPA (74/78, 95%). The concordance between the two methods was 100% for genotype determination (74/74). At the subtype level, all 3a and 2b samples gave identical results with both methods (17/17 and 7/7, respectively). Two 2c samples were correctly identified by microarray, but could only be determined to the genotype level with the Versant™ HCV assay. Genotype “1” subtypes (1a and 1b) were correctly identified by the Versant™ HCV assay and the microarray in 68% and 40% of cases, respectively. No genotype discordance was found for any sample. HCV was successfully genotyped with both methods, and this is of prime importance for treatment planning. Liquid microarray assays may therefore be added to the list of methods suitable for HCV genotyping. It provides comparable results and may readily be adapted for the detection of other viruses frequently co-infecting HCV patients. Liquid array technology is thus a reliable and promising platform for HCV genotyping

    The Stringent Response and Cell Cycle Arrest in Escherichia coli

    Get PDF
    The bacterial stringent response, triggered by nutritional deprivation, causes an accumulation of the signaling nucleotides pppGpp and ppGpp. We characterize the replication arrest that occurs during the stringent response in Escherichia coli. Wild type cells undergo a RelA-dependent arrest after treatment with serine hydroxamate to contain an integer number of chromosomes and a replication origin-to-terminus ratio of 1. The growth rate prior to starvation determines the number of chromosomes upon arrest. Nucleoids of these cells are decondensed; in the absence of the ability to synthesize ppGpp, nucleoids become highly condensed, similar to that seen after treatment with the translational inhibitor chloramphenicol. After induction of the stringent response, while regions corresponding to the origins of replication segregate, the termini remain colocalized in wild-type cells. In contrast, cells arrested by rifampicin and cephalexin do not show colocalized termini, suggesting that the stringent response arrests chromosome segregation at a specific point. Release from starvation causes rapid nucleoid reorganization, chromosome segregation, and resumption of replication. Arrest of replication and inhibition of colony formation by ppGpp accumulation is relieved in seqA and dam mutants, although other aspects of the stringent response appear to be intact. We propose that DNA methylation and SeqA binding to non-origin loci is necessary to enforce a full stringent arrest, affecting both initiation of replication and chromosome segregation. This is the first indication that bacterial chromosome segregation, whose mechanism is not understood, is a step that may be regulated in response to environmental conditions

    Effects and safety of rituximab in systemic sclerosis: An analysis from the European Scleroderma Trial and Research (EUSTAR) group

    Get PDF
    Objectives: To assess the effects of Rituximab (RTX) on skin and lung fibrosis in patients with systemic sclerosis (SSc) belonging to the European Scleroderma Trial and Research (EUSTAR) cohort and using a nested case-control design. Methods: Inclusion criteria were fulfilment of American College of Rheumatology classification criteria for SSc, treatment with RTX and availability of follow-up data. RTX-treated patients were matched with control patients from the EUSTAR database not treated with RTX. Matching parameters for skin/lung fibrosis were the modified Rodnan Skin Score (mRSS), forced vital capacity (FVC), follow-up duration, scleroderma subtype, disease duration and immunosuppressive co-treatment. The primary analysis was mRSS change from baseline to follow-up in the RTX group compared with the control group. Secondary analyses included change of FVC and safety measures. Results: 63 patients treated with RTX were included in the analysis. The case-control analysis in patients with severe diffuse SSc showed that mRSS changes were larger in the RTX group versus matched controls (N=25; -24.0±5.2% vs-7.7±4.3%; p=0.03). Moreover, in RTX-treated patients, the mean mRSS was significantly reduced at follow-up compared with baseline (26.6±1.4 vs 20.3±1.8; p=0.0001). In addition, in patients with interstitial lung disease, RTX prevented significantly the further decline of FVC compared with matched controls (N=9; 0.4±4.4% vs-7.7±3.6%; p=0.02). Safety measures showed a good profile consistent with previous studies in autoimmune rheumatic diseases. Conclusions: The comparison of RTX treated versus untreated matched-control SSc patients from the EUSTAR cohort demonstrated improvement of skin fibrosis and prevention of worsening lung fibrosis, supporting the therapeutic concept of B cell inhibition in SSc

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Role of MRI in staging and follow-up of endometrial and cervical cancer:pitfalls and mimickers

    Get PDF
    Abstract MRI plays important roles in endometrial and cervical cancer assessment, from detection to recurrent disease evaluation. Endometrial cancer (EC) is the most common malignant tumor of the female genital tract in Western countries. EC patients are divided into risk categories based on histopathological tumor type, grade, and myometrial invasion depth. EC is surgically staged using the International Federation of Gynecology and Obstetrics (FIGO) system. Since FIGO (2009) stage correlates with prognosis, preoperative staging is essential for tailored treatment. MRI reveals myometrial invasion depth, which correlates with tumor grade and lymph node metastases, and thus correlates with prognosis. Cervical cancer (CC) is the second most common cancer, and the third leading cause of cancer-related death among females in developing countries. The FIGO Gynecologic Oncology Committee recently revised its CC staging guidelines, allowing staging based on imaging and pathological findings when available. The revised FIGO (2018) staging includes node involvement and thus enables both therapy selection and evaluation, prognosis estimation, and calculation of end results. MRI can accurately assess prognostic indicators, e.g., tumor size, parametrial invasion, pelvic sidewall, and lymph node invasion. Despite these important roles of MRI, radiologists still face challenges due to the technical and interpretation pitfalls of MRI during all phases of endometrial and cervical cancer evaluation. Awareness of mimics that can simulate both cancers is critical. With careful application, functional MRI with DWI and DCE sequences can help establish a correct diagnosis, although it is sometimes necessary to perform biopsy and histopathological analysis

    Proteomic profiling of Burkholderia cenocepacia clonal isolates with different virulence potential retrieved from a cystic fibrosis patient during chronic lung infection

    Get PDF
    Respiratory infections with Burkholderia cepacia complex (Bcc) bacteria in cystic fibrosis (CF) are associated with a worse prognosis and increased risk of death. In this work, we assessed the virulence potential of three B. cenocepacia clonal isolates obtained from a CF patient between the onset of infection (isolate IST439) and before death with cepacia syndrome 3.5 years later (isolate IST4113 followed by IST4134), based on their ability to invade epithelial cells and compromise epithelial monolayer integrity. The two clonal isolates retrieved during late-stage disease were significantly more virulent than IST439. Proteomic profiling by 2-D DIGE of the last isolate recovered before the patient's death, IST4134, and clonal isolate IST439, was performed and compared with a prior analysis of IST4113 vs. IST439. The cytoplasmic and membrane-associated enriched fractions were examined and 52 proteins were found to be similarly altered in the two last isolates compared with IST439. These proteins are involved in metabolic functions, nucleotide synthesis, translation and protein folding, cell envelope biogenesis and iron homeostasis. Results are suggestive of the important role played by metabolic reprogramming in the virulence potential and persistence of B. cenocepacia, in particular regarding bacterial adaptation to microaerophilic conditions. Also, the content of the virulence determinant AidA was higher in the last 2 isolates. Significant levels of siderophores were found to be secreted by the three clonal isolates in an iron-depleted environment, but the two late isolates were more tolerant to low iron concentrations than IST439, consistent with the relative abundance of proteins involved in iron uptake.This work was supported by FEDER and FCT – Fundação para a Ciência e a Tecnologia (contract PEst-OE/EQB/LA0023/2011_ research line: Systems and Synthetic Biology; PhD grant to A.M. – SFRH/BD/37012/2007, and PD grants to S.S. – SFRH/BPD/75483/2010 and C.C. – SFRH/BPD/ 81220/2011. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    Proteome Analyses of Cellular Proteins in Methicillin-Resistant Staphylococcus aureus Treated with Rhodomyrtone, a Novel Antibiotic Candidate

    Get PDF
    The ethanolic extract from Rhodomyrtus tomentosa leaf exhibited good antibacterial activities against both methicillin-resistant Staphylococcus aureus (MRSA) and S. aureus ATCC 29213. Its minimal inhibitory concentration (MIC) values ranged from 31.25–62.5 µg/ml, and the minimal bactericidal concentration (MBC) was 250 µg/ml. Rhodomyrtone, an acylphloroglucinol derivative, was 62.5–125 times more potent at inhibiting the bacteria than the ethanolic extract, the MIC and MBC values were 0.5 µg/ml and 2 µg/ml, respectively. To provide insights into antibacterial mechanisms involved, the effects of rhodomyrtone on cellular protein expression of MRSA have been investigated using proteomic approaches. Proteome analyses revealed that rhodomyrtone at subinhibitory concentration (0.174 µg/ml) affected the expression of several major functional classes of whole cell proteins in MRSA. The identified proteins involve in cell wall biosynthesis and cell division, protein degradation, stress response and oxidative stress, cell surface antigen and virulence factor, and various metabolic pathways such as amino acid, carbohydrate, energy, lipid, and nucleotide metabolism. Transmission electron micrographs confirmed the effects of rhodomyrtone on morphological and ultrastructural alterations in the treated bacterial cells. Biological processes in cell wall biosynthesis and cell division were interrupted. Prominent changes including alterations in cell wall, abnormal septum formation, cellular disintegration, and cell lysis were observed. Unusual size and shape of staphylococcal cells were obviously noted in the treated MRSA. These pioneer findings on proteomic profiling and phenotypic features of rhodomyrtone-treated MRSA may resolve its antimicrobial mechanisms which could lead to the development of a new effective regimen for the treatment of MRSA infections
    corecore