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Abstract
The ever-increasing incidence of antibiotic-resistant infections combined with a weak pipeline of
new antibiotics has created a global public health crisis1. Accordingly, novel strategies for
enhancing our antibiotic arsenal are needed. As antibiotics kill bacteria in part by inducing
reactive oxygen species (ROS)2–4, we reasoned that targeting microbial ROS production might
potentiate antibiotic activity. Here we show that ROS production can be predictably enhanced in
Escherichia coli, increasing the bacteria’s susceptibility to oxidative attack. We developed an
ensemble, genome-scale metabolic modeling approach capable of predicting ROS production in E.
coli. The metabolic network was systematically perturbed and its flux distribution analyzed to
identify targets predicted to increase ROS production. In silico–predicted targets were
experimentally validated and shown to confer increased susceptibility to oxidants. Validated
targets also increased susceptibility to killing by antibiotics. This work establishes a systems-based
method to tune ROS production in bacteria and demonstrates that increased microbial ROS
production can potentiate killing by oxidants and antibiotics.

Reactive oxygen species (ROS) can damage DNA, RNA, proteins and lipids, resulting in
cell death when the level of ROS exceeds an organism’s detoxification and repair
capabilities. Despite this danger, aerobically growing bacteria endogenously generate ROS
as a metabolic by-product, a risk balanced by an increased efficiency and yield of energy
from growth substrates. At least two possible mechanisms exist to manipulate bacterial ROS
metabolism and achieve increased sensitivity to oxidative attack: (1) amplification of
endogenous ROS production, and (2) impairment of detoxification and repair systems.
Whereas removal of detoxification and repair systems has been shown to increase
susceptibility to oxidants5, 6, antibiotics7 and immunity8, 9, manipulation of endogenous
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ROS production remains largely unexplored. Endogenous ROS production has long been
appreciated as a factor influencing the ability of an organism to survive oxidative stress10,
but an inability to predict the outcome of genetic and environmental perturbations on ROS
production11 has hampered exploration of this phenomenon as an antimicrobial adjuvant.
This inability derives from a limited systems-level understanding of a potentially, expansive
and highly integrated biochemical reaction network. In this study, we sought to tune E. coli
metabolism for increased ROS production (specifically, O2

− and H2O2) and to determine
whether this effect can potentiate oxidative stress and antibiotic activity. Our goal was not to
overwhelm the oxidative detoxification and repair capabilities of E. coli with endogenously
generated ROS, but rather to increase endogenous production such that the ability of E. coli
to cope with exogenous oxidative stress would be compromised. We hypothesized that such
a strategy would broadly potentiate antimicrobials that harness oxidative stress and provide
a general approach for the discovery of antimicrobial adjuvants. To achieve this goal, we
developed an ensemble, genome-scale modeling approach to quantitatively estimate ROS
production from E. coli metabolism (Fig. 1).

The sources for the majority of endogenous ROS produced by E. coli remain elusive11. The
removal of enzymes that generate ROS in vitro has had seemingly little effect on whole-cell
ROS production11. This can be explained by the potential scope of ROS generators.
Previous studies have demonstrated that O2

− and H2O2 can be produced when O2 abstracts
electrons from reduced flavin, quinol and transition metal functional groups12, 13. Inspection
of E. coli metabolism for enzymes that use these electron carriers identified 133 reactions,
spanning many metabolic pathways, with the potential to generate ROS in the presence of
O2 (see Supplementary Table 1 online). The number of potential ROS-generating reactions
is of comparable size to the number of reactions that generate ATP/ADP, NAD/H, and
NADP/H, suggesting that ROS could play a crucial, highly integrated role in bacterial
metabolism. To predictably modify the production of such highly connected metabolites, a
quantitative systems-level approach is required, as even removal of enzymes that
endogenously produce ROS may increase or decrease production depending on the
redistribution of metabolic flux on the remaining ROS-generating enzymes11.

Systems-level metabolic modeling has been used extensively to optimize the production of
desirable metabolites, and has significantly impacted the fields of biotechnology, metabolic
discovery and microbiology14. In this study, we employed flux balance analysis (FBA) with
genome-scale metabolic models (GSMM) to simulate systems-level ROS production in E.
coli. In FBA, reaction stoichiometries are used to define a metabolic solution space, and
linear programming identifies a flux distribution within that space that optimizes an
objective function, such as biomass generation. Accuracy within the stoichiometric reaction
network is critical to the performance of constraint-based techniques15, 16. Current metabolic
reconstructions include consumption reactions, such as superoxide dismutase and catalase,
and generation reactions involved in cofactor biosynthesis and alternate carbon metabolism,
but are devoid of generation reactions that account for the majority of ROS produced17. To
construct a metabolic model capable of estimating ROS production, we added 266 additional
ROS production reactions to the E. coli GSMM17 one O2

− and one H2O2 producing reaction
for each of the 133 potential sources (see Methods, Supplementary Methods and
Supplementary Table 1 online). These potential ROS sources included all enzymes known to
generate H2O2 and O2

− in E. coli 11, 13, 17, 18, and this framework allowed separate
(independent species balances) but simultaneous modeling of H2O2 and O2

− production in
E. coli.

Optimization of an objective function is a critical feature of constraint-based techniques, and
maximizing for biomass generation has proven to be effective in predicting redistribution of
metabolic flux19. However, when presented with competing pathways, constraint-based
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methods will identify the most efficient pathway in terms of cellular resources as the one
that carries flux. ROS-generating reactions are less efficient competing pathways where
reducing equivalents are lost to O2 instead of being transferred to the intended acceptor.
Therefore, addition of ROS-generating reactions to a GSMM is necessary to model ROS
metabolism, but insufficient because the reactions will not carry flux (see Supplementary
Methods online). To address this, we recognized that ROS-generating reactions are coupled
to their more efficient counterpart, in the sense that initial electron transfer from reactant to
electron carrier proceeds normally and is dictated by requirements for the intended products,
and that it is the promiscuity of the reduced electron carrier with O2 that generates ROS.
Thus, ROS flux is a function of the number of electrons transferred to the electron carrier,
and consequently dependent on the reaction flux of the intended reaction. Therefore, in this
study, the flux of O2

− and H2O2 from ROS-generating enzymei was assumed to be
proportional to the reaction flux, vi. This assumption results in proportionality between ROS
flux from enzymei and the number of electrons transferred by enzymei, and is accomplished
by coupling the intended enzyme reaction to both its O2

− and H2O2 side-reactions (see
Methods and Supplementary Methods online). This coupling requires specification of the
proportion of electrons that flow to O2 to form O2

− and H2O2 for each of the 133 potential
ROS sources. These values vary significantly from enzyme to enzyme12, 20, and are largely
undefined owing to the absence of in vivo measurements. With this indeterminacy in mind,
we employed an ensemble approach.

Two ensembles of ROS-GSMMs were constructed, each with 1,000 different models (see
Supplementary Methods online). The proportions of electron flow from reactioni to generate
O2

− and H2O2 were captured by the constants  and ci, H2O2 (see Supplementary Methods
online). One ensemble derived these constants from a Gaussian distribution in order to
model a distributed ROS production network (many significant generators), whereas the
other ensemble derived these constants from an exponential distribution to model a
centralized ROS production network (few significant generators). Further, it was specified
that ROS could only be produced from these reactions and not consumed, with the exception
of O2

− attack of Fe-S centers, and that the in silico O2
− and H2O2 production rates of the

wildtype GSMM had to match the best available experimental estimates (see Methods and
Supplementary Methods online). Thus, every stoichiometric reaction network within the
ensembles had the exact same production rate of O2

− and H2O2 for its wildtype GSMM.
Also, the existence of alternative optimal solutions for ROS production of each wildtype
network was examined using flux varability analysis (FVA). At a biomass production rate of
100%, all wildtype networks generate a unique solution for the flux of H2O2 and O2

− (see
Supplementary Methods online).

With these ensembles, we explored in silico how perturbations to the metabolic network
alter basal ROS production. We performed a systematic gene-deletion analysis in which
genes were removed one at a time and reaction fluxes recalculated, while optimizing for
biomass (see Methods and Supplementary Methods online). This provided quantitative
distributions of ROS production (H2O2 and O2

−) from mutant E. coli (Fig. 1) and allowed
identification of deletions likely to alter basal ROS production, as measured by the mean
ROS production level (Fig. 2a,b andSupplementary Fig. 1a). To account for variable growth
rates of mutant strains, we normalized ROS flux by biomass production (BM), and
calculations are therefore H2O2/BM and O2

−/BM (mmol/gDW produced). From our analysis
of aerobic glucose minimal media, the gene deletions identified as being most likely to
increase ROS production encoded for ATP synthase (atpA-I), pyruvate dehydrogenase
(aceEF, lpd), NADH dehydrogenase complex I (nuoABCE-N), glutamate dehydrogenase
(gdhA), cytochrome bo (cyoABCD), and triose phosphate isomerase (tpiA). Investigation of
the flux distributions for these mutants identified a general trend for ROS production where
predicted increases correlated with inefficiencies in the production or usage of ATP.
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To validate our approach and in silico analysis, we experimentally tested a series of gene
deletions that encode enzymes within glycolysis, the pentose-phosphate pathway, Entner-
Doudoroff pathway, TCA cycle, glyoxylate shunt, aerobic respiration, acetate metabolism
and glutamate metabolism (Fig. 2c,d and Supplementary Fig. 1b). This collection of
enzymes included those predicted to increase ROS (targets) as well as those predicted to
leave ROS production unchanged (negative controls). We note that our predictions include
all twenty-one genetic mutants tested, both targets and negative controls, and that only those
enzymes that were experimentally tested are color-coded in Figure 2 and Supplementary
Figure 1. Isozymes selected for testing were based on literature evidence that suggested their
removal would most closely reflect model assumptions, and deletions of pyruvate
dehydrogenase and triose-phosphate isomerase were not tested owing to an inability to grow
in minimal glucose media (see Supplementary Methods online).

To measure O2
−, we employed a SoxR-controlled GFP-reporter system, whereas to measure

H2O2, we used both an OxyR-controlled GFP-reporter system and the direct-sensing HyPer
protein (Methods). Our experimental results show between 80–90% qualitative agreement
with our in silico predictions of H2O2 and O2

− production (Fig. 2 and Supplementary Fig. 1;
Correct predictions: dps-GFP: 19/21, soxS-GFP: 17/21, HyPer: 17/21). The probabilities
that these levels of agreement would have occurred by chance, using the null hypothesis that
random segregation of the 21 genes into targets and negative controls would match
experimental results as well as predictions from our modeling approach, are 3.7×10−4 (dps-
GFP), 1.0×10−2 (soxS-GFP), and 6.2×−3 (HyPer) (Methods). These experimental results
suggest that our systems-level, ensemble approach enables predictable tuning of ROS
production in E. coli.

We next sought to determine if increased basal production of O2
− and/or H2O2 can translate

into increased killing by oxidants. The oxidants we tested were O2
−(generated via

menadione), H2O2, and NaOCl (bleach). O2
− and H2O2 were chosen owing to their

inclusion in the model and importance for antibiotic action3, and NaOCl was chosen owing
to its use as a biocide. Strains chosen for testing of oxidant sensitivity were those with in
silico predictions that were confirmed by experimental results (Fig. 2). Our experimental
results indicate that increased basal production of O2

− or H2O2 generally increases microbial
susceptibility to oxidative attack (Fig. 3). Genetic deletions that increase ROS production
exhibited increased susceptibility to oxidants, whereas the negative control strains that
exhibited wildtype production levels of ROS did not. The probability this enrichment would
have been observed by random selection is 2.5×10−5 (Methods), and demonstrates that
increased production of O2

− and H2O2 can potentiate killing by oxidants. We note that some
predictions conferred increased susceptibility to all oxidants tested (ΔcyoA and ΔsdhC),
whereas others exhibited selective increases in sensitivity (e.g., Δzwf), suggesting that
sensitivity to one oxidant does not always translate to other oxidants. This is not surprising,
and likely derives from the differences in biochemical activity of the oxidants and the
distinct cellular death pathways they induce20, 21. Our results clearly demonstrate that
increasing endogenous production is a robust strategy to enhance the susceptibility of
microbes to oxidative stress.

Bactericidal antibiotics have been shown to share a common mechanism of cell death that
involves the production of ROS3. We sought to determine if increased basal production of
ROS could potentiate the action of bactericidal antibiotics (the β-lactam ampicillin, the
fluoroquinolones ofloxacin and ciprofloxacin, and the aminoglycoside gentamicin) (Fig. 4).
Three of the validated targets (ΔcyoA, ΔnuoG, ΔsdhC) exhibited increased sensitivity to
both β-lactam and fluoroquinolone antibiotics (Fig. 4a,b and Supplementary Fig. 2a) and
one of the targets (Δpta) exhibited increased sensitivity to only fluoroquinolones (Fig. 4b
and Supplementary Fig. 2a), whereas all of the negative control strains displayed wildtype
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sensitivity to both antibiotic classes (Fig. 4c,d and Supplementary Fig. 2b). This results in a
correct prediction rate for our approach of greater than 70% for both β-lactams and
fluoroquinolone antibiotics. Sensitivity to aminoglycosides was also tested, though we
reasoned that increased killing, in general, would not be observed. This expectation was
based on the fact that many of the gene deletions that increase basal ROS production
negatively impact proton motive force, which is important for aminoglycoside uptake22. As
expected, the negative controls had similar sensitivity to gentamicin as wildtype, whereas
many targets exhibited decreased sensitivity (see Supplementary Fig. 2c,d online). We note
that ΔatpC demonstrated increased sensitivity toward gentamicin, which we believe may be
the result of its positive impact on proton motive force23 as well as its effect on basal ROS
production. These data indicate that bactericidal antibiotic primary target interactions must
be enabled (e.g., via antibiotic uptake) in order to leverage ROS production as an adjuvant
therapy. Accordingly, we expected and demonstrated that the activities of bacteriostatic
antibiotics, which do not produce ROS6, are unaffected by increases in basal ROS
production (see Supplementary Fig. 3 online).

We also sought to demonstrate that chemical inhibition of one of the validated targets could
increase sensitivity to oxidants and bactericidal antibiotic treatment. To do so, we treated
wildtype with carboxin, an inhibitor of succinate dehydrogenase, and measured
susceptibility toward H2O2 and ampicillin, respectively. Addition of carboxin alone had no
effect on the growth of wildtype cells (Fig. 4e, f). However, wildtype cells treated with
H2O2 and carboxin demonstrated increased sensitivity compared to wildtype cells treated
with H2O2 alone (Fig. 4e). Similarly, wildtype cells treated with ampicillin and carboxin
were significantly more sensitive to the antibiotic than cells treated with ampicillin alone
(Fig. 4f). To more fully examine this synergy, we conducted a systematic drug screen
spanning five concentrations for each compound (carboxin and ampicillin) including the
untreated sample. This allowed us to calculate that carboxin concentrations of 250µM or
greater are synergistic with ampicillin concentrations between 7.5–10 µg/mL, using the Bliss
Independence and Highest Single Agent models of drug synergism (see Supplementary Fig.
4 online). These results show that chemical inhibition of a predicted and validated target
(succinate dehydrogenase) is sufficient to increase sensitivity to oxidative attack and
antibiotic treatment. Although carboxin itself is not suitable as an antibiotic adjuvant owing
to human toxicity issues24, validation that chemical inhibition of succinate dehydrogenase
confers similar sensitivity as genetic perturbation allows translation of this finding to
chemical library screening where non-toxic inhibitors of bacterial succinate dehydrogenase
and other predicted targets may be found. Chemical libraries have been successfully
screened for compounds with antimicrobial properties against pathogenic bacteria25 and our
method complements this work by identifying novel enzyme targets for compounds which
may have no antimicrobial properties alone, but which enhance the killing efficacy of
current antibacterial agents.

Here we established a systems-based method to predictably tune microbial ROS production.
By developing genome-scale ROS metabolic models, we were able to predict redistribution
of ROS flux resulting from network perturbations and demonstrate experimentally that
increased ROS flux can potentiate oxidative attack from antibiotic and biocide treatment.
This approach allows rapid identification of antibacterial adjuvant targets, and is translatable
to other pathogens of interest, such as Mycobacterium tuberculosis, Staphylococcus aureus,
Haemophilus influenzae, and Salmonella typhimurium, where metabolic reconstructions are
available26–29. In addition, the increasingly rapid construction of genome-scale metabolic
models will extend the breadth of the technique30, opening up the possibility of using it to
target newly identified resistant strains.
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Online Methods
Antibiotics and chemicals

All chemicals and antibiotics were purchased from Sigma or Fisher Scientific. Concentrated
stock solutions of menadione, H2O2, NaOCl, and all antibiotics were prepared fresh daily.
H2O2, NaOCl, ampicillin, and gentamicin were diluted with or dissolved in sterile deionized
water. Ofloxacin and ciprofloxacin were dissolved in 0.1N NaOH. Tetracycline was
dissolved in 50% ethanol (v/v). Menadione, carboxin, and chloramphenicol were dissolved
in 100% ethanol.

Strains and media
Escherichia coli MG1655 was used in this study. Genetic deletions of aceA, appB, atpC,
cyoA, edd, fumB, fbaB, gdhA, gltB, gnd, mqo, nuoG, pfkB, pta, pykA, rpiB, sdhC, sucC,
talB, tktB and zwf were transduced from the Keio single-gene deletion knockout library31

into MG1655 using the P1 phage method, and confirmed with PCR. The media used for all
experiments was M9 minimal media with 10mM glucose as the sole carbon source or MOPS
minimal media with 10mM glucose (for the HyPer protein experiments).

Plasmids
The O2

− response sensor used in this study was constructed previously7, and utilized the
native soxS promoter upstream of the gfpmut2 gene. The H2O2 response sensor used the
same plasmid backbone and was constructed by PCR-amplifying the native dps promoter
and cloning it into the BamHI and XhoI restriction sites, which formerly contained the soxS
promoter. The forward primer for PCR was
GCGCCTCGAGCCGCTTCAATGGGGTCTACGCT and the reverse primer was
GGCCGGATCCTCGGAGACATCGTTGCGGGTAT. The H2O2 response sensor was
confirmed to increase expression of GFP upon addition of H2O2.

GFP reporter assays
Fluorescent measurements were performed on a SpectraMax M5 plate reader (Molecular
Devices) using Costar black, clear, flat bottom 96-well plates (Fisher). Each well contained
195µL of M9 minimal glucose media with ampicillin (100µg/mL) and 5µL of overnight
culture (plasmids carry an AmpR gene for selection). Overnight cultures were grown in M9
minimal glucose media. Strains were grown in the plate reader at 37°C with shaking. OD600
and fluorescence (excitation: 488nm, emission: 520nm, bottom read) were monitored every
10 minutes. Fluorescence/OD600 values were calculated using ordinary least squares
regression for measurements between OD600 = 0.1 and OD600 = 0.4. Values reported in
Supplementary Table 2 are the relative mean and standard error mean for at least three
independent biological replicates. P-values were calculated using a single-tailed, two-sample
t-test, assuming unequal variance.

HyPer assays
The HyPer protein is a fluorescent probe that was made by inserting a circularly permuted
yellow fluorescent protein into the H2O2-sensitive regulatory domain of OxyR32. In the
presence of increasing concentrations of H2O2, the probe’s excitation peak shifts
ratiometrically from 420nm to 500nm, which allows for quantitative measurement of
cellular H2O2 levels32, 33. HyPer is based on an E. coli H2O2-sensing domain, and has been
shown to be effective at sensing H2O2 within E. coli32. HyPer was provided from the
manufacturer (Evrogen) as an IPTG-inducible gene in a pQE30 vector (ampicillin selection
marker)32. Single colonies of strains were inoculated into LB media supplemented with
50µg/mL ampicillin and grown overnight at 37°C. The ΔatpC and Δzwf strains were run
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separately with wildtype because those strains grew significantly slower than the other
mutant strains. Strains were inoculated 1:100 into MOPS minimal media plus 10mM
Glucose and 50µg/mL ampicillin, and grown to an OD600 of 0.2–0.3. All cultures were then
diluted with MOPS minimal media plus 50µg/mL ampicillin in a black, clear bottom 96-well
plate to a final OD600 of 0.05, in a final volume of 200µL per well. 20µL of mineral oil
(Sigma Aldrich) was added to each well to prevent evaporation. Strains were grown with
and without 75µM IPTG in a SpectraMax M5 plate reader (Molecular Devices) at 37°C with
shaking, and OD600 and fluorescence (excitation: 420nm and 500nm, emission: 530nm,
bottom read) were monitored every 15 minutes for 12 hours. Measurements between OD600
= 0.2 and OD600 = 0.6 were corrected for background strain fluorescence by subtracting the
fluorescence values for un-induced cultures at the same cell density, as measured by OD600.
The 420nm × 500nm curve was linear over this region, and therefore ordinary least squares
regression was used to interpolate between time points. The 500nm excitation fluorescence
value that corresponded with 55 fluorescence units from 420nm excitation was calculated
and the 500/420 ratio was obtained for all strains. Values reported in Supplementary Table 3
are the relative mean and standard error mean for three independent biological replicates. P-
values were calculated using a single-tailed, two-sample t-test, assuming unequal variance.

Antimicrobial sensitivity assays
Strains were grown aerobically from an initial inoculation of OD600 = 0.01 to OD600 =
0.16–0.20 in 250mL baffled flasks filled to 1/10th the total volume and shaken at 300rpm at
37°C. For menadione, H2O2, and antibiotic sensitivity assays, time-zero samples were
collected (200–400µL), then 1mL aliquots were transferred to 14mL test tubes, and
appropriate volumes of menadione, H2O2, or antibiotic stock solutions, not in excess of
15µL, were added to obtain the final concentrations (1mM menadione, 5mM H2O2, 7.5 µg/
mL ampicillin, 100 ng/mL ofloxacin, 15ng/mL ciprofloxacin, 500 ng/mL gentamicin, 10 µg/
mL tetracycline, and 15 µg/mL chloramphenicol). For NaOCl, due to its reactivity with
media components34, 10mL of culture was centrifuged at 3,000 rpm for 10 minutes in a
benchtop centrifuge, 9.5mL of the supernatant was removed and the cell pellet was
resuspended with 9.5mL of sterile phosphate buffered saline (PBS) at pH 7.2. The
suspension was spun down again at 3,000 rpm for 10 minutes, and 9.5mL of the supernatant
removed. The cell pellet was resuspended with 4.5mL of sterile PBS. The cell density was
adjusted with sterile PBS to achieve an OD600 = 0.2. Time-zero samples were collected
(200–400µL), 1mL aliquots were transferred to 14mL test tubes, and NaOCl stock solution
was added to obtain the final concentration (20µM NaOCl). At the specified times (1, 2
hours for menadione, H2O2, NaOCl; 1, 2, 3, 4 hours for antibiotics), sample aliquots were
collected (200–400µL). All samples were immediately centrifuged at 10k rpm in a
microcentrifuge, 95% of the supernatant was removed, and the cell pellets were resuspended
in PBS. Samples were serially-diluted and plated on LB agar plates, which were then
incubated overnight at 37°C. Colony forming units were counted approximately 16–18
hours after plating.

Carboxin inhibitor experiments
Strains were grown aerobically from an initial inoculation of OD600 = 0.01 to OD600 =
0.16–0.20 in 250mL baffled flasks filled to 1/10th the total volume and shaken at 300 rpm at
37°C. Time-zero samples were collected (200–400µL), then 1mL aliquots were transferred
to 14mL test tubes. Carboxin solubilized in 100% ethanol or ethanol alone was added to the
tubes. Carboxin was added at a final concentration of 500 µM. H2O2 or ampicillin stock
solutions were added to obtain the final concentrations of 5 mM H2O2 and 10 µg/mL
ampicillin. A dose response was also performed of both carboxin (0, 250, 500, 750, and
1000 µM) and ampicillin (0, 5, 7.5, 10, and 15 µg/mL) to determine if the two compounds
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demonstrate a synergistic interaction. Drug synergism was calculated using the Bliss
Independence and Highest Single Agent models35, 36. Specifically, the formula,

(1)

was used to calculate synergism with the Bliss Independence model. A and B are the effects
of the two drugs in isolation, whereas, BICAB is the combined effect of the two drugs as
predicted by the Bliss Independence model. If CAB, the experimentally-determined
combined effect of the two drugs, is > BICAB, synergy is observed. In contrast, in the
Highest Single Agent model, if CAB > max(A, B) synergy is observed. Since we were
monitoring cell death, the quantitative effect of each compound was defined as the fractional
reduction of the population, R = 1-CFUt/CFU0, where CFUt is the number of CFUs
measured after treatment, and CFU0 is the number of CFUs measured before treatment. R =
1 indicates complete loss of the population, R = 0 indicates a population in stasis, and R < 0
indicates a growing population. Since carboxin was non-lethal and allowed significant
growth, even at concentrations as high as 1mM, the Highest Single Agent model was a much
more stringent measure of synergy than the Bliss Independence model. To prove this, let us
rewrite the Bliss Independence model as follows,

(2)

If A is a compound that reduces CFUs, such as ampicillin, its effect above the MIC will be
0≤A≤1, whereas if B is a compound that allows growth at all concentrations, its effect will
be B < 0 regardless of the concentration. Rearrangement of the above yields,

(3)

Since equation 3 yields BICAB/A < 1 for all B<0 and 0<A<1, the Highest Single Agent
model requires CAB/A > 1 and the Bliss Independence model requires CAB/BICAB > 1 for
synergy, the Highest Single Agent model will always be a more strict synergy requirement
under these conditions. Synergy can readily be observed from the relative survival curves in
Supplementary Figure 4 (curves substantially lower than 1) where 7.5 and 10 µg/mL
ampicillin synergize with carboxin concentrations from 250–1000µM.

Modeling Escherichia coli ROS metabolism
Systems-level metabolic modeling was performed using FBA and the COBRA Toolbox37.
Aerobic E. coli metabolism (O2 uptake = −18.5 mmol/gDW/hr17) was modeled using
iAF1260 with glucose (glucose uptake = −11 mmol/gDW/hr17) and ammonia as the sole
carbon and nitrogen sources. The model was augmented with ROS-generating reactions as
described in the Supplementary Methods. Single-gene deletion analysis was performed
using the built-in COBRA function. Complete modeling details are provided in the
Supplementary Methods.

Statistical analysis of model performance
Statistical significance was assessed using the null hypothesis that random selection of genes
would match experimental results as well as predictions from our modeling approach. For
the GFP reporter systems, where N genes exhibited an increased ROS/BM compared to
wildtype (p-value < 0.05), and M genes did not (N+M: total number of genes tested), we
identified the number of genes, P, our approach predicted to increase ROS/BM. We
calculated the (a) total number of ways to pick P genes from N+M, and then calculated the
(b) number of ways to pick P genes that would yield C correct predictions, C being defined
as the correctly predicted number of genes our approach identified to increase ROS/BM.
The ratio of (b)/(a) is the probability that random selection would yield the same frequency
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of correct predictions as our approach. Agreement was assessed by calculating the number
of predictions that agreed with experimental results. For the O2

−-sensing GFP reporter, 17 of
the 21 genes (81%) experimentally tested qualitatively agreed with predictions, whereas for
the H2O2-sensing GFP reporter, 19 of the 21 genes (90%) experimentally tested
qualitatively agreed with predictions. Identical procedures were used in the analysis of
HyPer results, except that a p-value of 0.1 was used to identify genes that exhibited an
increased H2O2/BM compared to wildtype. For antimicrobial sensitivity assays, statistical
significance was assessed similarly, except that N in this case is the number of genes that
exhibited a 2-fold increase in susceptibility toward any oxidant after a treatment time of 2
hours.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
This work was supported by the NIH Director's Pioneer Award Program and the Howard Hughes Medical Institute.

References
1. Arias CA, Murray BE. Antibiotic-resistant bugs in the 21st century--a clinical super-challenge. N

Engl J Med. 2009; 360:439–443. [PubMed: 19179312]

2. Foti JJ, Devadoss B, Winkler JA, Collins JJ, Walker GC. Oxidation of the guanine nucleotide pool
underlies cell death by bactericidal antibiotics. Science. 2012; 336:315–319. [PubMed: 22517853]

3. Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. A common mechanism of cellular
death induced by bactericidal antibiotics. Cell. 2007; 130:797–810. [PubMed: 17803904]

4. Kohanski MA, Dwyer DJ, Wierzbowski J, Cottarel G, Collins JJ. Mistranslation of membrane
proteins and two-component system activation trigger antibiotic-mediated cell death. Cell. 2008;
135:679–690. [PubMed: 19013277]

5. Carlioz A, Touati D. Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide
dismutase necessary for aerobic life? EMBO J. 1986; 5:623–630. [PubMed: 3011417]

6. Loewen PC. Isolation of catalase-deficient Escherichia coli mutants and genetic mapping of katE, a
locus that affects catalase activity. J Bacteriol. 1984; 157:622–626. [PubMed: 6319370]

7. Dwyer DJ, Kohanski MA, Hayete B, Collins JJ. Gyrase inhibitors induce an oxidative damage
cellular death pathway in Escherichia coli. Mol Syst Biol. 2007; 3:91. [PubMed: 17353933]

8. Hebrard M, Viala JP, Meresse S, Barras F, Aussel L. Redundant hydrogen peroxide scavengers
contribute to Salmonella virulence and oxidative stress resistance. J Bacteriol. 2009; 191:4605–
4614. [PubMed: 19447905]

9. Liu CI, et al. A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence. Science.
2008; 319:1391–1394. [PubMed: 18276850]

10. Imlay JA, Fridovich I. Assay of metabolic superoxide production in Escherichia coli. J Biol Chem.
1991; 266:6957–6965. [PubMed: 1849898]

11. Korshunov S, Imlay JA. Two sources of endogenous hydrogen peroxide in Escherichia coli. Mol
Microbiol. 2010; 75:1389–1401. [PubMed: 20149100]

12. Massey V. Activation of molecular oxygen by flavins and flavoproteins. J Biol Chem. 1994;
269:22459–22462. [PubMed: 8077188]

13. Messner KR, Imlay JA. The identification of primary sites of superoxide and hydrogen peroxide
formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli. J Biol
Chem. 1999; 274:10119–10128. [PubMed: 10187794]

14. Feist AM, Palsson BO. The growing scope of applications of genome-scale metabolic
reconstructions using Escherichia coli. Nat Biotechnol. 2008; 26:659–667. [PubMed: 18536691]

Brynildsen et al. Page 9

Nat Biotechnol. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



15. Becker SA, Palsson BO. Context-specific metabolic networks are consistent with experiments.
PLoS Comput Biol. 2008; 4:e1000082. [PubMed: 18483554]

16. Covert MW, Knight EM, Reed JL, Herrgard MJ, Palsson BO. Integrating high-throughput and
computational data elucidates bacterial networks. Nature. 2004; 429:92–96. [PubMed: 15129285]

17. Feist AM, et al. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that
accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol. 2007; 3:121. [PubMed:
17593909]

18. Messner KR, Imlay JA. Mechanism of superoxide and hydrogen peroxide formation by fumarate
reductase, succinate dehydrogenase, and aspartate oxidase. J Biol Chem. 2002; 277:42563–42571.
[PubMed: 12200425]

19. Edwards JS, Ibarra RU, Palsson BO. In silico predictions of Escherichia coli metabolic capabilities
are consistent with experimental data. Nat Biotechnol. 2001; 19:125–130. [PubMed: 11175725]

20. Imlay JA. Pathways of oxidative damage. Annu Rev Microbiol. 2003; 57:395–418. [PubMed:
14527285]

21. Winter J, Ilbert M, Graf PC, Ozcelik D, Jakob U. Bleach activates a redox-regulated chaperone by
oxidative protein unfolding. Cell. 2008; 135:691–701. [PubMed: 19013278]

22. Taber HW, Mueller JP, Miller PF, Arrow AS. Bacterial uptake of aminoglycoside antibiotics.
Microbiol Rev. 1987; 51:439–457. [PubMed: 3325794]

23. Jensen PR, Michelsen O. Carbon and energy metabolism of atp mutants of Escherichia coli. J
Bacteriol. 1992; 174:7635–7641. [PubMed: 1447134]

24. US EPA: R.E.D. Facts - Carboxin. EPA 738-F-04-010. 2004.

25. Boshoff HI, et al. The transcriptional responses of Mycobacterium tuberculosis to inhibitors of
metabolism: novel insights into drug mechanisms of action. J Biol Chem. 2004; 279:40174–
40184. [PubMed: 15247240]

26. AbuOun M, et al. Genome scale reconstruction of a Salmonella metabolic model: comparison of
similarity and differences with a commensal Escherichia coli strain. J Biol Chem. 2009;
284:29480–29488. [PubMed: 19690172]

27. Becker SA, Palsson BO. Genome-scale reconstruction of the metabolic network in Staphylococcus
aureus N315: an initial draft to the two-dimensional annotation. BMC Microbiol. 2005; 5:8.
[PubMed: 15752426]

28. Jamshidi N, Palsson BO. Investigating the metabolic capabilities of Mycobacterium tuberculosis
H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. BMC Syst Biol.
2007; 1:26. [PubMed: 17555602]

29. Schilling CH, Palsson BO. Assessment of the metabolic capabilities of Haemophilus influenzae Rd
through a genome-scale pathway analysis. J Theor Biol. 2000; 203:249–283. [PubMed: 10716908]

30. Henry CS, et al. High-throughput generation, optimization and analysis of genome-scale metabolic
models. Nat Biotechnol. 2010; 28:977–982. [PubMed: 20802497]

31. Baba T, et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the
Keio collection. Mol Syst Biol. 2006; 2 2006 0008.

32. Belousov VV, et al. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide.
Nat Methods. 2006; 3:281–286. [PubMed: 16554833]

33. Malinouski M, Zhou Y, Belousov VV, Hatfield DL, Gladyshev VN. Hydrogen peroxide probes
directed to different cellular compartments. PLoS One. 2011; 6:e14564. [PubMed: 21283738]

34. Dukan S, Touati D. Hypochlorous acid stress in Escherichia coli: resistance, DNA damage, and
comparison with hydrogen peroxide stress. J Bacteriol. 1996; 178:6145–6150. [PubMed: 8892812]

35. Yeh P, Kishony R. Networks from drug-drug surfaces. Mol Syst Biol. 2007; 3:85. [PubMed:
17332759]

36. Hegreness M, Shoresh N, Damian D, Hartl D, Kishony R. Accelerated evolution of resistance in
multidrug environments. Proc Natl Acad Sci U S A. 2008; 105:13977–13981. [PubMed:
18779569]

37. Becker SA, et al. Quantitative prediction of cellular metabolism with constraint-based models: the
COBRA Toolbox. Nat Protoc. 2007; 2:727–738. [PubMed: 17406635]

Brynildsen et al. Page 10

Nat Biotechnol. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Systems approach to enhance microbial ROS production. (left) Methodology for the
development and validation of an ensemble of systems-level models of E. coli metabolism
for estimation of basal ROS production. ROS-generating reactions were incorporated into a
metabolic reconstruction and FBA framework17. Network perturbations via single-gene
knockouts were performed in silico using FBA to identify alterations that affect ROS
production. (right) In silico predictions were evaluated experimentally by generating
mutants and measuring their ROS production and susceptibility to killing by oxidants and
antibiotics.
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Figure 2.
In silico predictions and experimental measures of H2O2 and O2

− levels. (a) Predicted H2O2
levels of various mutants compared to wildtype. Blue designates strains whose mean H2O2
production levels were simulated to be >5% higher than wildtype over both ensembles,
whereas yellow designates strains whose mean H2O2 production levels were simulated to be
<5% higher than wildtype over both ensembles. (b) Predicted O2

− levels of various mutants
compared to wildtype. Blue designates strains whose mean O2

− production levels were
simulated to be >5% higher than wildtype over both ensembles, whereas yellow designates
strains whose mean O2

− production levels were simulated to be <5% higher than wildtype
over both ensembles. (c) Experimentally measured relative fluorescence/OD600 of strains
with the H2O2-sensitive reporter (dps promoter-gfp). Blue designates strains that were
experimentally measured to have increased levels of H2O2 compared with wildtype (P-value
< 0.05), whereas yellow designates strains that were experimentally measured to have levels
of H2O2 that do not exceed those of wildtype. (d) Experimentally measured relative

Brynildsen et al. Page 12

Nat Biotechnol. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



fluorescence/OD600 of strains with the O2
−-sensitive reporter (soxS promoter-gfp). Blue

designates strains that were experimentally measured to have increased levels of O2
−

compared with wildtype (P-value < 0.05), whereas yellow designates strains that were
experimentally measured to have levels of O2

− that do not exceed those of wildtype. *
denotes genes that are essential in our media conditions. Grey denotes genes that were not
experimentally examined (for consistency between diagrams, these genes were also denoted
by grey in a and b, although in silico predictions were computed).
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Figure 3.
Evaluation of susceptibility to killing by oxidants. (a) Time course of predicted target strains
and wildtype treated with H2O2. (b) Time course of predicted target strains and wildtype
treated with menadione. (c) Time course of predicted target strains and wildtype treated with
NaOCl. (d) Time course of negative control strains and wildtype treated with H2O2. (e)
Time course of negative control strains and wildtype treated with menadione. (f) Time
course of negative control strains and wildtype treated with NaOCl. Mean ± SEM are shown
for all plots.
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Figure 4.
Evaluation of susceptibility to killing by bactericidal antibiotics and combination treatments
with a chemical inhibitor. (a) Time course of predicted target strains and wildtype treated
with ampicillin. (b) Time course of predicted target strains and wildtype treated with
ofloxacin. (c) Time course of negative control strains and wildtype treated with ampicillin.
(d) Time course of negative control strains and wildtype treated with ofloxacin. (e) Time
course of wildtype cells treated with carboxin alone, H2O2 alone, a combination of carboxin
and H2O2, or no treatment. (f) Time course of wildtype cells treated with carboxin alone,
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ampicillin alone, a combination of carboxin and ampicillin, or no treatment. Mean ± SEM
are shown for a–f.
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